Solar Physics

, Volume 290, Issue 4, pp 1105–1118 | Cite as

Data Assimilation in the ADAPT Photospheric Flux Transport Model

  • Kyle S. HickmannEmail author
  • Humberto C. Godinez
  • Carl J. Henney
  • C. Nick Arge


Global maps of the solar photospheric magnetic flux are fundamental drivers for simulations of the corona and solar wind and therefore are important predictors of geoeffective events. However, observations of the solar photosphere are only made intermittently over approximately half of the solar surface. The Air Force Data Assimilative Photospheric Flux Transport (ADAPT) model uses localized ensemble Kalman filtering techniques to adjust a set of photospheric simulations to agree with the available observations. At the same time, this information is propagated to areas of the simulation that have not been observed. ADAPT implements a local ensemble transform Kalman filter (LETKF) to accomplish data assimilation, allowing the covariance structure of the flux-transport model to influence assimilation of photosphere observations while eliminating spurious correlations between ensemble members arising from a limited ensemble size. We give a detailed account of the implementation of the LETKF into ADAPT. Advantages of the LETKF scheme over previously implemented assimilation methods are highlighted.


Solar magnetic fields Photosphere Data assimilation 



This research was primarily supported by NASA Living With a Star project #NNA13AB92I, “Data Assimilation for the Integrated Global-Sun Model”. Additional support was provided by the Air Force Office of Scientific Research project R-3562-14-0, “Incorporation of Solar Far-Side Active Region Data within the Air Force Data Assimilative Photospheric Flux Transport (ADAPT) Model”. The photospheric observations used in Figures 1, 3, and 4 were provided by SOLIS-VSM part of the NSO Integrated Synoptic Program (NISP), managed by the National Solar Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under a cooperative agreement with the National Science Foundation. Approved for public release: LA-UR-14-27938.


  1. Archontis, V.: 2008, Magnetic flux emergence in the Sun. J. Geophys. Res. Space Phys. 113(A3), 1978.  DOI CrossRefGoogle Scholar
  2. Arge, C.N., Henney, C.J., Koller, J., Compeau, C.R., Young, S., MacKenzie, D., Fay, A., Harvey, J.W.: 2010, Air force data assimilative photospheric flux transport (ADAPT) model. In: Maksimovic, M., Issautier, K., Meyer-Vernet, N., Moncuquet, M., Pantellini, F. (eds.) Twelfth International Solar Wind Conference 1216, AIP, Saint-Malo, France, 343. Google Scholar
  3. Arge, C., Henney, C., Koller, J., Toussaint, W., Harvey, J., Young, S.: 2011, Improving data drivers for coronal and solar wind models. In: Pogorelov, N.V. (ed.) ASTRONUM – 2010 444, Astron. Soc. Pac., San Francisco, 99. Google Scholar
  4. Arge, C.N., Henney, C.J., González Hernández, I., Toussaint, W.A., Koller, J., Godinez, H.C.: 2013, Modeling the corona and solar wind using ADAPT maps that include far-side observations. In: Zank, G.P., Borovsky, J., Bruno, R., Cirtain, J., Cranmer, S., Elliott, H., Giacalone, J., Gonzalez, W., Li, G., Marsch, E., Moebius, E., Pogorelov, N., Spann, J., Verkhoglyadova, O. (eds.) SOLAR WIND 13: Proceedings of the Thirteenth International Solar Wind Conference 1539, AIP, Big Island, Hawaii, 11. Google Scholar
  5. Bélanger, E., Vincent, A., Charbonneau, P.: 2007, Predicting solar flares by data assimilation in avalanche models. Solar Phys. 245(1), 141. ADS,  DOI. CrossRefADSGoogle Scholar
  6. Bishop, C.H., Etherton, B.J., Majumdar, S.J.: 2001, Adaptive sampling with the ensemble transform Kalman filter. part I: Theoretical aspects. Mon. Weather Rev. 129(3), 420. CrossRefADSGoogle Scholar
  7. Bouttier, F., Courtier, P.: 2002, Data assimilation concepts and methods March 1999. In: Meteorological Training Course Lecture Series. European Centre for Medium-Range Weather Forecasts, Google Scholar
  8. Brun, A.S.: 2007, Towards using modern data assimilation and weather forecasting methods in solar physics. Astron. Nachr. 328(3 – 4), 329. CrossRefADSGoogle Scholar
  9. Brun, A.S., Jouve, L.: 2007, Global models of the magnetic Sun. Proc. Int. Astron. Un. 3(S247), 33. Google Scholar
  10. Butala, M., Hewett, R., Frazin, R., Kamalabadi, F.: 2010, Dynamic three-dimensional tomography of the solar corona. Solar Phys. 262(2), 495. ADS,  DOI. CrossRefADSGoogle Scholar
  11. Daley, R.: 1991, Atmospheric Data Analysis, Cambridge University Press, Cambridge. Google Scholar
  12. Dikpati, M., Anderson, J., Mitra, D.: 2014, Ensemble Kalman filter data assimilation in a Babcock–Leighton solar dynamo model: An observation system simulation experiment for reconstructing meridional flow speed. Geophys. Res. Lett. 41(15), 5361.  DOI. CrossRefADSGoogle Scholar
  13. Dikpati, M., Gilman, P.: 2006, Simulating and predicting solar cycles using a flux-transport dynamo. Astrophys. J. 649(1), 498.  DOI. CrossRefADSGoogle Scholar
  14. Evensen, G.: 2009, Data Assimilation: The Ensemble Kalman Filter, Springer, New York. CrossRefGoogle Scholar
  15. Fontenla, J.M., Quémerais, E., González Hernández, I., Lindsey, C., Haberreiter, M.: 2009, Solar irradiance forecast and far-side imaging. Adv. Space Res. 44(457).  DOI.
  16. Gaspari, G., Cohn, S.E.: 1999, Construction of correlation functions in two and three dimensions. Q. J. Roy. Meteorol. Soc. 125(554), 723. CrossRefADSGoogle Scholar
  17. González Hernández, I., Díaz Alfaro, M., Jain, K., Tobiska, W.K., Braun, D.C., Hill, F., Pérez Hernández, F.: 2014, A full-Sun magnetic index from helioseismology inferences. Solar Phys. 289(503).  DOI.
  18. Hamill, T.M., Whitaker, J.S., Snyder, C.: 2001, Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Weather Rev. 129(11), 2776. CrossRefADSGoogle Scholar
  19. Harvey, J., Hill, F., Hubbard, R., Kennedy, J., Leibacher, J., Pintar, J., Gilman, P., Noyes, R., Toomre, J., Ulrich, R., et al.: 1996, The global oscillation network group (GONG) project. Science 272, 1284. CrossRefADSGoogle Scholar
  20. Hathaway, D.H., Rightmire, L.: 2010, Variations in the Sun’s meridional flow over a solar cycle. Science 327(5971), 1350. CrossRefADSGoogle Scholar
  21. Henney, C., Keller, C., Harvey, J., Georgoulis, M., Hadder, N., Norton, A., Raouafi, N.-E., Toussaint, R.: 2009, Solis vector spectromagnetograph: Status and science. In: Berdyugina, S.V., Nagendra, K.N., Ramelli, R. (eds.) Solar Polarization – 5 405, Astron. Soc. Pac., Ascona, Switzerland, 47. Google Scholar
  22. Henney, C., Toussaint, W., White, S., Arge, C.: 2012, Forecasting F 10.7 with solar magnetic flux transport modeling. Space Weather 10.  DOI.
  23. Houtekamer, P.L., Mitchell, H.L.: 2001, A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Weather Rev. 129(1), 123. CrossRefADSGoogle Scholar
  24. Hunt, B.R., Kostelich, E.J., Szunyogh, I.: 2007, Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D 230(1), 112. CrossRefADSzbMATHMathSciNetGoogle Scholar
  25. Jouve, L., Brun, A.S., Talagrand, O.: 2011, Assimilating data into an αω dynamo model of the Sun: A variational approach. Astrophys. J. 735(1), 31. CrossRefADSGoogle Scholar
  26. Kalnay, E.: 2003, Atmospheric Modeling, Data Assimilation, and Predictability, Cambridge University Press, Cambridge. Google Scholar
  27. Kitiashvili, I., Kosovichev, A.: 2008, Application of data assimilation method for predicting solar cycles. Astrophys. J. Lett. 688(1), L49. CrossRefADSGoogle Scholar
  28. Komm, R., Howard, R., Harvey, J.: 1993, Rotation rates of small magnetic features from two-and one-dimensional cross-correlation analyses. Solar Phys. 145(1), 1. ADS,  DOI. CrossRefADSGoogle Scholar
  29. Lindsey, C., Braun, D.: 1997, Helioseismic holography. Astrophys. J. 485, 895. CrossRefADSGoogle Scholar
  30. Mackay, D., Yeates, A.: 2012, The Sun’s global photospheric and coronal magnetic fields: Observations and models. Living Rev. Solar Phys. 9, 6. CrossRefADSGoogle Scholar
  31. Mosher, J.M.: 1977, The magnetic history of solar active regions. Ph.D. thesis, California Institute of Technology. Google Scholar
  32. Ott, E., Hunt, B.R., Szunyogh, I., Zimin, A.V., Kostelich, E.J., Corazza, M., Kalnay, E., Patil, D., Yorke, J.A.: 2004, A local ensemble Kalman filter for atmospheric data assimilation. Tellus A 56(5), 415. CrossRefADSGoogle Scholar
  33. Ott, E., Patil, D., Kalnay, E., Corazza, M., Szunyogh, I., Hunt, B., Yorke, J.A.: 2002, Exploiting local low dimensionality of the atmospheric dynamics for efficient ensemble Kalman filtering. Technical report. Google Scholar
  34. Riley, P.: 2007, An alternative interpretation of the relationship between the inferred open solar flux and the interplanetary magnetic field. Astrophys. J. 667.  DOI.
  35. Schou, J., Scherrer, P., Bush, R., Wachter, R., Couvidat, S., Rabello-Soares, M., Bogart, R., Hoeksema, J., Liu, Y., Duvall, T., et al.: 2012, Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 229. ADS,  DOI. CrossRefADSGoogle Scholar
  36. Schrijver, C.J., Alan, T.M.: 2001, On the formation of polar spots in Sun-like stars. Astrophys. J. 551(2), 1099. CrossRefADSGoogle Scholar
  37. Simon, G., Title, A., Weiss, N.: 1995, Kinematic models of supergranular diffusion on the Sun. Astrophys. J. 442, 886. CrossRefADSGoogle Scholar
  38. Snodgrass, H.B.: 1983, Magnetic rotation of the solar photosphere. Astrophys. J. 270, 288. CrossRefADSGoogle Scholar
  39. Socker, D.G., Howard, R.A., Korendyke, C.M., Simnett, G.M., Webb, D.F.: 2000, NASA Solar Terrestrial Relations Observatory (STEREO) mission heliospheric imager. In: Fineschi, S., Korendyke, C.M., Siegmund, O.H.W., Woodgate, B.E. (eds.) Instrumentation for UV/EUV Astronomy and Solar Missions, San Diego, 284. Intern. Soc. Opt. Photo. CrossRefGoogle Scholar
  40. Svedin, A., Cuéllar, M.C., Brandenburg, A.: 2013, Data assimilation for stratified convection. Mon. Not. Roy. Astron. Soc. 433(3), 2278.  DOI. CrossRefADSGoogle Scholar
  41. Wang, X., Bishop, C.H.: 2003, A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes. J. Atmos. Sci. 60(9), 1140. CrossRefADSGoogle Scholar
  42. Wang, Y.-M., Sheeley, N.: 1994, The rotation of photospheric magnetic fields: A random walk transport model. Astrophys. J. 430, 399. CrossRefADSGoogle Scholar
  43. Whitaker, J.S., Hamill, T.M.: 2002, Ensemble data assimilation without perturbed observations. Mon. Weather Rev. 130(7), 1913. CrossRefADSGoogle Scholar
  44. Worden, J., Harvey, J.: 2000, An evolving synoptic magnetic flux map and implications for the distribution of photospheric magnetic flux. Solar Phys. 195(2), 247. ADS,  DOI. CrossRefADSGoogle Scholar
  45. Yang, S.-C., Kalnay, E., Hunt, B., Bowler, N.E.: 2009, Weight interpolation for efficient data assimilation with the local ensemble transform Kalman filter. Q. J. Roy. Meteorol. Soc. 135(638), 251. CrossRefGoogle Scholar
  46. Yeates, A.R., Nandy, D., Mackay, D.H.: 2008, Exploring the physical basis of solar cycle predictions: Flux transport dynamics and persistence of memory in advection-versus diffusion-dominated solar convection zones. Astrophys. J. 673(1), 544. CrossRefADSGoogle Scholar
  47. Zhang, J., Wang, Y., Liu, Y.: 2010, Statistical properties of solar active regions obtained from an automatic detection system and the computational biases. Astrophys. J. 723(2), 1006. CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Kyle S. Hickmann
    • 1
    Email author
  • Humberto C. Godinez
    • 1
  • Carl J. Henney
    • 2
  • C. Nick Arge
    • 2
  1. 1.Applied Mathematics and Plasma Physics GroupLos Alamos National LaboratoryLos AlamosUSA
  2. 2.AFRL/Space Vehicles DirectorateKirtland AFBAlbuquerqueUSA

Personalised recommendations