Advertisement

Solar Physics

, Volume 290, Issue 11, pp 3189–3201 | Cite as

Source of a Prominent Poleward Surge During Solar Cycle 24

  • A. R. Yeates
  • D. Baker
  • L. van Driel-Gesztelyi
Probing the Sun: Inside and Out

Abstract

As an observational case study, we consider the origin of a prominent poleward surge of leading polarity, visible in the magnetic butterfly diagram during Solar Cycle 24. A new technique is developed for assimilating individual regions of strong magnetic flux into a surface-flux transport model. By isolating the contribution of each of these regions, the model shows the surge to originate primarily in a single high-latitude activity group consisting of a bipolar active region present in Carrington Rotations 2104 – 05 (November 2010 – January 2011) and a multipolar active region in Rotations 2107 – 08 (February – April 2011). This group had a strong axial dipole moment opposed to Joy’s law. On the other hand, the modelling suggests that the transient influence of this group on the butterfly diagram will not be matched by a large long-term contribution to the polar field because it is located at high latitude. This is in accordance with previous flux-transport models.

Keywords

Active regions, magnetic fields Magnetic fields, photosphere Solar cycle, models 

Notes

Acknowledgements

We acknowledge the Leverhulme Trust for funding the “Probing the Sun: inside and out” project upon which this research is based. ARY thanks STFC for financial support through consortium grant ST/K001043/1. The research leading to these results has received funding from the European Union’s Seventh Programme for Research, Technological Development and Demonstration under Grant Agreement No. 284461 (eHEROES project). LvDG acknowledges the Hungarian government for grant OTKA K 109276. DB and LvDG thanks STFC for support under Consolidated Grant ST/H00260/1. This work utilises data obtained by the Global Oscillation Network Group (GONG) program, managed by the National Solar Observatory, which is operated by AURA, Inc. under a cooperative agreement with the National Science Foundation. The data were acquired by instruments operated by the Big Bear Solar Observatory, High Altitude Observatory, Learmonth Solar Observatory, Udaipur Solar Observatory, Instituto de Astrofísica de Canarias, and Cerro Tololo Interamerican Observatory. We thank Duncan Mackay for reading an initial draft and the referee for helpful suggestions.

References

  1. Arge, C.N., Henney, C.J., Koller, J., Compeau, C.R., Young, S., MacKenzie, D., Fay, A., Harvey, J.W.: 2010, Air Force Data Assimilative Photospheric Flux Transport (ADAPT) model. In: Maksimovic, M., et al. (eds.) Twelfth International Solar Wind Conference, CP, 1216, AIP, Melville, 343.  DOI. ADS. Google Scholar
  2. Babcock, H.W.: 1961, The topology of the Sun’s magnetic field and the 22-year cycle. Astrophys. J. 133, 572.  DOI. ADS. ADSCrossRefGoogle Scholar
  3. Basu, S., Antia, H.M.: 2010, Characteristics of solar meridional flows during solar cycle 23. Astrophys. J. 717, 488.  DOI. ADS. ADSCrossRefGoogle Scholar
  4. Baumann, I., Schmitt, D., Schüssler, M.: 2006, A necessary extension of the surface flux transport model. Astron. Astrophys. 446, 307.  DOI. ADS. ADSCrossRefGoogle Scholar
  5. Benevolenskaya, E.E.: 2003, Impulses of activity and the solar cycle. Solar Phys. 216, 325.  DOI. ADS. ADSCrossRefGoogle Scholar
  6. Cameron, R.H., Dasi-Espuig, M., Jiang, J., Işık, E., Schmitt, D., Schüssler, M.: 2013, Limits to solar cycle predictability: Cross-equatorial flux plumes. Astron. Astrophys. 557, A141.  DOI. ADS. ADSCrossRefGoogle Scholar
  7. De Rosa, M.L., Schrijver, C.J.: 2006, Consequences of large-scale flows around active regions on the dispersal of magnetic field across the solar surface. In: Thompson, M. (ed.) Proc. SOHO 18/GONG 2006/HELAS I (SP-264), ESA, Noordwijk. ADS. Google Scholar
  8. DeVore, C.R., 1986, Theory and simulation of the evolution of the large-scale solar magnetic field, PhD thesis, Princeton Univ. Google Scholar
  9. DeVore, C.R., Boris, J.P., Sheeley, N.R. Jr.: 1984, The concentration of the large-scale solar magnetic field by a meridional surface flow. Solar Phys. 92, 1.  DOI. ADS. ADSCrossRefGoogle Scholar
  10. Durrant, C.J., Turner, J.P.R., Wilson, P.R.: 2004, The mechanism involved in the reversals of the Sun’s polar magnetic fields. Solar Phys. 222, 345.  DOI. ADS. ADSCrossRefGoogle Scholar
  11. Gaizauskas, V.: 2008, Development of flux imbalances in solar activity nests and the evolution of filament channels. Astrophys. J. 686, 1432.  DOI. ADS. ADSCrossRefGoogle Scholar
  12. Gaizauskas, V., Harvey, K.L., Harvey, J.W., Zwaan, C.: 1983, Large-scale patterns formed by solar active regions during the ascending phase of cycle 21. Astrophys. J. 265, 1056.  DOI. ADS. ADSCrossRefGoogle Scholar
  13. Giovanelli, R. G.: 1985, The sunspot cycle and solar magnetic fields. I – The mechanism as inferred from observation. II – The interaction of flux tubes with the convection zone. Aust. J. Phys. 38, 1045. ADS. ADSCrossRefGoogle Scholar
  14. Gnevyshev, M.N.: 1938, On the nature of solar activity. Izv. Gl. Astron. Obs. Pulkove 16, 36. ADS. ADSGoogle Scholar
  15. Hale, G.E., Ellerman, F., Nicholson, S.B., Joy, A.H.: 1919, The magnetic polarity of Sun-spots. Astrophys. J. 49, 153.  DOI. ADS. ADSCrossRefGoogle Scholar
  16. Higgins, P.A., Gallagher, P.T., McAteer, R.T.J., Bloomfield, D.S.: 2011, Solar magnetic feature detection and tracking for space weather monitoring. Adv. Space Res. 47, 2105.  DOI. ADS. ADSCrossRefGoogle Scholar
  17. Howard, R., Labonte, B.J.: 1981, Surface magnetic fields during the solar activity cycle. Solar Phys. 74, 131.  DOI. ADS. ADSCrossRefGoogle Scholar
  18. Jiang, J., Cameron, R.H., Schüssler, M.: 2014, Effects of the scatter in sunspot group tilt angles on the large-scale magnetic field at the solar surface. Astrophys. J. 791, 5.  DOI. ADS. ADSCrossRefGoogle Scholar
  19. Jiang, J., Cameron, R., Schmitt, D., Schüssler, M.: 2010a, Modeling the Sun’s open magnetic flux and the heliospheric current sheet. Astrophys. J. 709, 301.  DOI. ADS. ADSCrossRefGoogle Scholar
  20. Jiang, J., Işik, E., Cameron, R.H., Schmitt, D., Schüssler, M.: 2010b, The effect of activity-related meridional flow modulation on the strength of the solar polar magnetic field. Astrophys. J. 717, 597.  DOI. ADS. ADSCrossRefGoogle Scholar
  21. Jiang, J., Hathaway, D.H., Cameron, R.H., Solanki, S.K., Gizon, L., Upton, L.: 2014, Magnetic flux transport at the solar surface. Space Sci. Rev. 186, 491.  DOI. ADS. ADSCrossRefGoogle Scholar
  22. Leighton, R.B.: 1964, Transport of magnetic fields on the Sun. Astrophys. J. 140, 1547.  DOI. ADS. ADSCrossRefzbMATHGoogle Scholar
  23. Leighton, R.B.: 1969, A magneto-kinematic model of the solar cycle. Astrophys. J. 156, 1.  DOI. ADS. ADSCrossRefGoogle Scholar
  24. Mackay, D.H., Lockwood, M.: 2002, The evolution of the Sun’s open magnetic flux – II. Full solar cycle simulations. Solar Phys. 209, 287.  DOI. ADS. ADSCrossRefGoogle Scholar
  25. Mackay, D.H., Yeates, A.R.: 2012, The Sun’s global photospheric and coronal magnetic fields: Observations and models. Living Rev. Solar Phys. 9, 6.  DOI. ADS. ADSCrossRefGoogle Scholar
  26. Mackay, D.H., Priest, E.R., Lockwood, M.: 2002, The evolution of the Sun’s open magnetic flux – I. A single bipole. Solar Phys. 207, 291.  DOI. ADS. ADSCrossRefGoogle Scholar
  27. Muñoz-Jaramillo, A., Dasi-Espuig, M., Balmaceda, L.A., DeLuca, E.E.: 2013, Solar cycle propagation, memory, and prediction: Insights from a century of magnetic proxies. Astrophys. J. Lett. 767, L25.  DOI. ADS. ADSCrossRefGoogle Scholar
  28. Petrie, G.J.D.: 2012, Evolution of active and polar photospheric magnetic fields during the rise of cycle 24 compared to previous cycles. Solar Phys. 281, 577.  DOI. ADS. ADSCrossRefGoogle Scholar
  29. Petrie, G.J.D., Petrovay, K., Schatten, K.: 2014, Solar polar fields and the 22-year activity cycle: Observations and models. Space Sci. Rev. 186, 325.  DOI. ADS. ADSCrossRefGoogle Scholar
  30. Schrijver, C.J., De Rosa, M.L., Title, A.M.: 2002, What is missing from our understanding of long-term solar and heliospheric activity? Astrophys. J. 577, 1006.  DOI. ADS. ADSCrossRefGoogle Scholar
  31. Schrijver, C.J., De Rosa, M.L., Title, A.M.: 2003, Asterospheric magnetic fields and winds of cool stars. Astrophys. J. 590, 493.  DOI. ADS. ADSCrossRefGoogle Scholar
  32. Schüssler, M., Baumann, I.: 2006, Modeling the Sun’s open magnetic flux. Astron. Astrophys. 459, 945.  DOI. ADS. ADSCrossRefGoogle Scholar
  33. Sheeley, N.R. Jr.: 2005, Surface evolution of the Sun’s magnetic field: A historical review of the flux-transport mechanism. Living Rev. Solar Phys. 2, 5.  DOI. ADS. ADSCrossRefGoogle Scholar
  34. Sheeley, N.R. Jr., DeVore, C.R., Boris, J.P.: 1985, Simulations of the mean solar magnetic field during sunspot cycle 21. Solar Phys. 98, 219.  DOI. ADS. ADSCrossRefGoogle Scholar
  35. Ulrich, R.K., Tran, T.: 2013, The global solar magnetic field – Identification of traveling, long-lived ripples. Astrophys. J. 768, 189.  DOI. ADS. ADSCrossRefGoogle Scholar
  36. Upton, L., Hathaway, D.H.: 2014, Predicting the Sun’s polar magnetic fields with a surface flux transport model. Astrophys. J. 780, 5.  DOI. ADS. ADSCrossRefGoogle Scholar
  37. van Ballegooijen, A.A., Mackay, D.H.: 2007, Model for the coupled evolution of subsurface and coronal magnetic fields in solar active regions. Astrophys. J. 659, 1713.  DOI. ADS. ADSCrossRefGoogle Scholar
  38. Wang, Y.-M., Sheeley, N.R. Jr.: 1991, Magnetic flux transport and the Sun’s dipole moment – New twists to the Babcock–Leighton model. Astrophys. J. 375, 761.  DOI. ADS. ADSCrossRefGoogle Scholar
  39. Wang, Y.-M., Lean, J., Sheeley, N.R. Jr.: 2002, Role of a variable meridional flow in the secular evolution of the Sun’s polar fields and open flux. Astrophys. J. 577, L53.  DOI. ADS. ADSCrossRefGoogle Scholar
  40. Wang, Y.-M., Nash, A.G., Sheeley, N.R. Jr.: 1989a, Evolution of the Sun’s polar fields during sunspot cycle 21 – Poleward surges and long-term behavior. Astrophys. J. 347, 529.  DOI. ADS. ADSCrossRefGoogle Scholar
  41. Wang, Y.-M., Nash, A.G., Sheeley, N.R. Jr.: 1989b, Magnetic flux transport on the Sun. Science 245, 712.  DOI. ADS. ADSCrossRefGoogle Scholar
  42. Worden, J., Harvey, J.: 2000, An evolving synoptic magnetic flux map and implications for the distribution of photospheric magnetic flux. Solar Phys. 195, 247.  DOI. ADS. ADSCrossRefGoogle Scholar
  43. Yeates, A.R.: 2014, Coronal magnetic field evolution from 1996 to 2012: Continuous non-potential simulations. Solar Phys. 289, 631.  DOI. ADS. ADSCrossRefGoogle Scholar
  44. Yeates, A.R., Muñoz-Jaramillo, A.: 2013, Kinematic active region formation in a three-dimensional solar dynamo model. Mon. Not. Roy. Astron. Soc. 436, 3366.  DOI. ADS. ADSCrossRefGoogle Scholar
  45. Yeates, A.R., Mackay, D.H., van Ballegooijen, A.A.: 2007, Modelling the global solar corona: Filament chirality observations and surface simulations. Solar Phys. 245, 87.  DOI. ADS. ADSCrossRefGoogle Scholar
  46. Zolotova, N.V., Ponyavin, D.I.: 2012, Reconstruction of magnetic field surges to the poles from sunspot impulses. In: Mandrini, C.H., Webb, D.F. (eds.) Comparative Magnetic Minima: Characterizing quiet times in the Sun and Stars, IAU Symp, 286, Cambridge University Press, Cambridge, 88,  DOI. ADS. Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • A. R. Yeates
    • 1
  • D. Baker
    • 2
  • L. van Driel-Gesztelyi
    • 2
    • 3
    • 4
  1. 1.Department of Mathematical SciencesDurham UniversityDurhamUK
  2. 2.UCL-Mullard Space Science LaboratoryDorkingUK
  3. 3.Observatoire de ParisLESIA, UMR 8109 (CNRS)Meudon Principal CedexFrance
  4. 4.Konkoly Observatory, Research Centre for Astronomy and Earth SciencesHungarian Academy of SciencesBudapestHungary

Personalised recommendations