Advertisement

Solar Physics

, Volume 290, Issue 3, pp 659–671 | Cite as

Application of Mutual Information Methods in Time–Distance Helioseismology

  • Dustin KeysEmail author
  • Shukur Kholikov
  • Alexei A. Pevtsov
Article

Abstract

We apply a new technique, the mutual information (MI) from information theory, to time–distance helioseismology, and demonstrate that it can successfully reproduce several classic results based on the widely used cross-covariance method. MI quantifies the deviation of two random variables from complete independence and represents a more general method for detecting dependencies in time series than the cross-covariance function, which only detects linear relationships. We briefly describe the MI-based technique and discuss the results of applying MI to derive the solar differential profile, a travel-time deviation map for a sunspot, and a time–distance diagram from quiet-Sun measurements.

Keywords

Helioseismology, observations Helioseismology, theory Velocity fields, interior 

Notes

Acknowledgements

NSO is operated by the Association of Universities for Research in Astronomy (AURA, Inc.), under a cooperative agreement with the National Science Foundation (NSF). The SOHO/MDI data used here are provided by the SOHO/MDI consortium. SOHO is a project of international cooperation between ESA and NASA. The authors thank the anonymous referee for his/her suggestions that allowed the authors to improve the article.

References

  1. Barato, A.C., Hartich, D., Seifert, U.: 2013a, Information-theoretic versus thermodynamic entropy production in autonomous sensory networks. Phys. Rev. E 87(4), 042104.  DOI. CrossRefADSGoogle Scholar
  2. Barato, A.C., Hartich, D., Seifert, U.: 2013b, Rate of mutual information between coarse-grained non-Markovian variables. J. Stat. Phys. 153, 460.  DOI. CrossRefADSzbMATHMathSciNetGoogle Scholar
  3. Burtseva, O., Kholikov, S., Serebryanskiy, A., Chou, D.-Y.: 2007, Effects of dispersion of wave packets in the determination of lifetimes of high-degree solar p modes from time distance analysis: TON data. Solar Phys. 241, 17.  DOI. CrossRefADSGoogle Scholar
  4. Chen, K.-R., Chou, D.-Y., TON Team: 1996, Determination of the lifetime of high-l solar p-modes from the interaction of p-mode waves with sunspots. Astrophys. J. 465, 985.  DOI. CrossRefADSGoogle Scholar
  5. Chou, D.-Y., Serebryanskiy, A., Ye, Y.-J., Dai, D.-C., Khalikov, S.: 2001, Lifetimes of high-l solar p-modes from time-distance analysis. Astrophys. J. Lett. 554, L229.  DOI. CrossRefADSGoogle Scholar
  6. Cover, T.M., Thomas, J.A.: 2006, Elements of Information Theory, 2nd edn. Wiley-Interscience, Hoboken, 20. zbMATHGoogle Scholar
  7. Duvall, T.L. Jr., Jefferies, S.M., Harvey, J.W., Pomerantz, M.A.: 1993, Time-distance helioseismology. Nature 362, 430.  DOI. CrossRefADSGoogle Scholar
  8. Horowitz, J.M., Esposito, M.: 2014, Thermodynamics with continuous information flow. Phys. Rev. X 4(3), 031015.  DOI. Google Scholar
  9. Jaynes, E.T.: 1957, Information theory and statistical mechanics. Phys. Rev. 106(4), 620.  DOI. CrossRefADSzbMATHMathSciNetGoogle Scholar
  10. Kholikov, S.: 2004, Travel time measurements in sunspots. In: Danesy, D. (ed.) SOHO 14 Helio- and Asteroseismology: Towards a Golden Future, ESA Special Publication 559, 513. Google Scholar
  11. Kholikov, S., Hill, F.: 2014, Meridional-flow measurements from global oscillation network group data. Solar Phys. 289, 1077.  DOI. CrossRefADSGoogle Scholar
  12. Kholikov, S., Serebryanskiy, A., Jackiewicz, J.: 2014, Meridional flow in the solar convection zone. I. measurements from GONG data. Astrophys. J. 784, 145.  DOI. CrossRefADSGoogle Scholar
  13. Kozachenko, L.F., Leonenko, N.N.: 1987, Sample estimate of the entropy of a random vector. Probl. Pereda. Inf. 23, 9. http://mi.mathnet.ru/eng/ppi/v23/i2/p9. MathSciNetGoogle Scholar
  14. Kraskov, A., Stögbauer, H., Grassberger, P.: 2004, Estimating mutual information. Phys. Rev. E 69(6), 066138.  DOI. CrossRefADSMathSciNetGoogle Scholar
  15. Sagawa, T., Ueda, M.: 2012, Fluctuation theorem with information exchange: role of correlations in stochastic thermodynamics. Phys. Rev. Lett. 109(18), 180602.  DOI. CrossRefADSGoogle Scholar
  16. Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., Wolfson, C.J., Zayer, I., MDI Engineering Team: 1995, The solar oscillations investigation – Michelson Doppler imager. Solar Phys. 162, 129.  DOI. CrossRefADSGoogle Scholar
  17. Shannon, C.: 1948, A mathematical theory of communication. Bell Syst. Tech. J. 27, 379. CrossRefzbMATHMathSciNetGoogle Scholar
  18. Victor, J.D.: 2002, Binless strategies for estimation of information from neural data. Phys. Rev. E 66(5), 051903.  DOI. CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Dustin Keys
    • 1
    • 2
    Email author
  • Shukur Kholikov
    • 2
  • Alexei A. Pevtsov
    • 3
  1. 1.University of ArizonaTucsonUSA
  2. 2.National Solar ObservatoryTucsonUSA
  3. 3.National Solar ObservatorySunspotUSA

Personalised recommendations