Solar Physics

, Volume 290, Issue 3, pp 841–874 | Cite as

Relationship between Solar Energetic Particles and Properties of Flares and CMEs: Statistical Analysis of Solar Cycle 23 Events

  • M. DierckxsensEmail author
  • K. Tziotziou
  • S. Dalla
  • I. Patsou
  • M. S. Marsh
  • N. B. Crosby
  • O. Malandraki
  • G. Tsiropoula


A statistical analysis of the relationship between solar energetic particles (SEPs) and properties of solar flares and coronal mass ejections (CMEs) is presented. SEP events during Solar Cycle 23 are selected that are associated with solar flares originating in the visible hemisphere of the Sun and that are at least of magnitude M1. Taking into account all flares and CMEs that occurred during this period, the probability for the occurrence of an SEP event near Earth is determined. A strong rise of this probability is observed for increasing flare intensities, more western locations, higher CME speeds, and halo CMEs. The correlations between the proton peak flux and these solar parameters are derived for a low (> 10 MeV) and high (> 60 MeV) energy range excluding any flux enhancement due to the passage of fast interplanetary shocks. The obtained correlation coefficients are 0.55±0.07 (0.63±0.06) with flare intensity, and 0.56±0.08 (0.40±0.09) with CME speed for E>10 MeV (E>60 MeV). For both energy ranges, the correlations with flare longitude and CME width are very weak or non-existent. Furthermore, the occurrence probabilities, correlation coefficients, and mean peak fluxes are derived in multi-dimensional bins combining the aforementioned solar parameters. The correlation coefficients are also determined in different proton energy channels ranging from 5 to 200 MeV. The results show that the correlation between the proton peak flux and the CME speed decreases with energy, while the correlation with the flare intensity shows the opposite behaviour. Furthermore, the correlation with the CME speed is stronger than the correlation with the flare intensity below 15 MeV and becomes weaker above 20 MeV. When the enhancements in the flux profiles due to interplanetary shocks are not excluded, only a small but not very significant change is observed in the correlation coefficients between the proton peak flux below 7 MeV and the CME speed.


Solar energetic particles Solar flares Coronal mass ejections 



This work has received funding from the European Union Seventh Framework Programme (FP7/2007 – 2013) under grant agreement n. 263252 [COMESEP]. We also acknowledge the ESA SEPEM reference proton dataset. The authors are grateful for the detailed comments and suggestions received from the anonymous referee which helped to improve this article.


  1. Belov, A., Garcia, H., Kurt, V., Mavromichalaki, H., Gerontidou, M.: 2005, Proton enhancements and their relation to the X-ray flares during the three last solar cycles. Solar Phys. 229, 135.  DOI. ADSGoogle Scholar
  2. Cane, H.V.: 1995, The structure and evolution of interplanetary shocks and the relevance for particle acceleration. Nucl. Phys. B, Proc. Suppl. 39, 35.  DOI. CrossRefADSGoogle Scholar
  3. Cane, H.V., McGuire, R.E., von Rosenvinge, T.T.: 1986, Two classes of solar energetic particle events associated with impulsive and long-duration soft X-ray flares. Astrophys. J. 301, 448.  DOI. CrossRefADSGoogle Scholar
  4. Cane, H.V., Reames, D.V., von Rosenvinge, T.T.: 1988, The role of interplanetary shocks in the longitude distribution of solar energetic particles. J. Geophys. Res. 93, 9555.  DOI. CrossRefADSGoogle Scholar
  5. Cane, H.V., Richardson, I.G., von Rosenvinge, T.T.: 2010, A study of solar energetic particle events of 1997–2006: Their composition and associations. J. Geophys. Res. 115, 8101.  DOI. CrossRefGoogle Scholar
  6. Channok, C., Ruffolo, D., Desai, M.I., Mason, G.M.: 2005, Finite-time shock acceleration of energetic storm particles. Astrophys. J. Lett. 633, L53.  DOI. CrossRefADSGoogle Scholar
  7. Cliver, E.W., Ling, A.G., Belov, A., Yashiro, S.: 2012, Size distributions of solar flares and solar energetic particle events. Astrophys. J. Lett. 756, L29.  DOI. CrossRefADSGoogle Scholar
  8. Crosby, N.B., Heynderickx, D., Jiggens, P., Aran A., Sanahuja B., Truscott, P., Lei, F., Jacobs, J., Poedts, S., Gabriel, S., Sandberg, I., Glover, A., Hilgers, A.: 2014, SEPEM: a tool for statistical modelling the solar energetic particle environment. Space Weather, submitted. Google Scholar
  9. Crosby, N.B., Veronig, A., Robbrecht, E., Vrsnak, B., Vennerstrom, S., Malandraki, O., Dalla, S., Rodriguez, L., Srivastava, N., Hesse, M., Odstrcil, D., COMESEP Consortium: 2012, Forecasting the space weather impact: The COMESEP project. In: Hu, Q., Li, G., Zank, G.P., Ao, X., Verkhoglyadova, O., Adams, J.H. (eds.) Amer. Inst. Physics. C. S. 1500, 159.  DOI. Google Scholar
  10. Dalla, S., Agueda, N.: 2010, Role of latitude of source region in Solar Energetic Particle events. Twelfth Int. Solar Wind Conf. 1216, 613.  DOI. ADSGoogle Scholar
  11. Dumbović, M., Devos, A., Vršnak, B., Sudar, D., Rodriguez, L., Ruždjak, D., Leer, K., Vennerstrøm, S., Veronig, A.M., Robbrecht, E.: 2015, Geoeffectiveness of Coronal Mass Ejections in the SOHO era. Solar Phys. 290, 579.  DOI. ADSGoogle Scholar
  12. Gopalswamy, N., Yashiro, S., Akiyama, S., Mäkelä, P., Xie, H., Kaiser, M.L., Howard, R.A., Bougeret, J.L.: 2008, Coronal mass ejections, type II radio bursts, and solar energetic particle events in the SOHO era. Ann. Geophys. 26, 3033.  DOI. CrossRefADSGoogle Scholar
  13. Hwang, J., Cho, K.S., Moon, Y.J., Kim, R.S., Park, Y.D.: 2010, Solar proton events during the solar cycle 23 and their association with CME parameters. Acta Astron. 67, 353. CrossRefGoogle Scholar
  14. Jiggens, P.T.A., Gabriel, S.B., Heynderickx, D., Crosby, N., Glover, A., Hilgers, A.: 2012, ESA SEPEM project: peak flux and fluence model. IEEE Trans. Nucl. Sci. 59, 1066.  DOI. CrossRefADSGoogle Scholar
  15. Kahler, S.W.: 2001, The correlation between solar energetic particle peak intensities and speeds of coronal mass ejections: Effects of ambient particle intensities and energy spectra. J. Geophys. Res. 106, 20947.  DOI. CrossRefADSGoogle Scholar
  16. Kallenrode, M.B.: 2003, Current views on impulsive and gradual solar energetic particle events. J. Phys. G, Nucl. Phys. 29, 965. ADSGoogle Scholar
  17. Kocharov, L., Laitinen, T., Usoskin, I., Vainio, R.: 2014, Transmission and emission of solar energetic particles in semi-transparent shocks. Astrophys. J. Lett. 787, L21.  DOI. CrossRefADSGoogle Scholar
  18. Kurt, V., Belov, A., Mavromichalaki, H., Gerontidou, M.: 2004, Statistical analysis of solar proton events. Ann. Geophys. 22, 2255.  DOI. CrossRefADSGoogle Scholar
  19. Laurenza, M., Cliver, E.W., Hewitt, J., Storini, M., Ling, A.G., Balch, C.C., Kaiser, M.L.: 2009, A technique for short-term warning of solar energetic particle events based on flare location, flare size, and evidence of particle escape. Space Weather 7, 4008.  DOI. CrossRefADSGoogle Scholar
  20. Miteva, R., Klein, K.L., Malandraki, O., Dorrian, G.: 2013, Solar energetic particle events in the 23rd solar cycle: interplanetary magnetic field configuration and statistical relationship with flares and CMEs. Solar Phys. 282, 579.  DOI. ADSGoogle Scholar
  21. Park, J., Moon, Y.J., Gopalswamy, N.: 2012, Dependence of solar proton events on their associated activities: Coronal mass ejection parameters. J. Geophys. Res. 117, 8108.  DOI. CrossRefGoogle Scholar
  22. Park, J., Moon, Y.J., Lee, D.H., Youn, S.: 2010, Dependence of solar proton events on their associated activities: Flare parameters. J. Geophys. Res. (Space Phys.) 115(A14), 10105.  DOI. CrossRefADSGoogle Scholar
  23. Reames, D.V.: 1988, Bimodal abundances in the energetic particles of solar and interplanetary origin. Astrophys. J. Lett. 330, L71.  DOI. CrossRefADSGoogle Scholar
  24. Reames, D.V.: 1999, Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev. 90, 413.  DOI. ADSGoogle Scholar
  25. Reames, D.V.: 2013, The two sources of solar energetic particles. Space Sci. Rev. 175, 53.  DOI. ADSGoogle Scholar
  26. Richardson, I.G., von Rosenvinge, T.T., Cane, H.V., Christian, E.R., Cohen, C.M.S., Labrador, A.W., Leske, R.A., Mewaldt, R.A., Wiedenbeck, M.E., Stone, E.C.: 2014, > 25 MeV proton events observed by the High Energy Telescopes on the STEREO A and B spacecraft and/or at Earth during the first ∼ seven years of the STEREO mission. Solar Phys. 289, 3059.  DOI. ADSGoogle Scholar
  27. Trottet, G., Samwel, S., Klein, K.L., Dudok de Wit, T., Miteva, R.: 2014, Statistical evidence for contributions of flares and coronal mass ejections to major solar energetic particle events. Solar Phys.  DOI. Google Scholar
  28. Van Hollebeke, M.A.I., Ma Sung, L.S., McDonald, F.B.: 1975, The variation of solar proton energy spectra and size distribution with heliolongitude. Solar Phys. 41, 189.  DOI. ADSGoogle Scholar
  29. Wall, J.V., Jenkins, C.R.: 2003, Practical Statistics for Astronomers. Cambridge University Press, Cambridge. CrossRefGoogle Scholar
  30. Wang, R.: 2006, Statistical characteristics of solar energetic proton events from January 1997 to June 2005. Astropart. Phys. 26, 202.  DOI. CrossRefADSGoogle Scholar
  31. Xapsos, M.A., Barth, J.L., Stassinopoulos, E.G., Messenger, S.R., Walters, R.J., Summers, G.P., Burke, E.A.: 2000, Characterizing solar proton energy spectra for radiation effects applications. IEEE Trans. Nucl. Sci. 47, 2218.  DOI. CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • M. Dierckxsens
    • 1
    Email author
  • K. Tziotziou
    • 2
  • S. Dalla
    • 3
  • I. Patsou
    • 2
  • M. S. Marsh
    • 3
  • N. B. Crosby
    • 1
  • O. Malandraki
    • 2
  • G. Tsiropoula
    • 2
  1. 1.Belgian Institute for Space Aeronomy (BIRA-IASB)BrusselsBelgium
  2. 2.IAASARSNational Observatory of AthensPenteliGreece
  3. 3.Jeremiah Horrocks InstituteUniversity of Central LancashirePrestonUK

Personalised recommendations