Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Chaotic Charged Particle Motion and Acceleration in Reconnected Current Sheet


We investigate charged particle dynamics and acceleration in the current sheet located in the reconnection outflow region. We consider parameter ranges corresponding to current sheets in the solar corona. We demonstrate a new effect of fast chaotization of charged particle motion due to effective geometrical destruction of adiabatic invariants in current sheets in the presence of a quite strong sheared magnetic field and a finite electric field. This fast chaotization results in particle acceleration and enhancement of effective collisionless conductivity. Additionally, chaotization of charged particle motion could lead to particle escape from the current sheet and corresponding formation of field-aligned beams. We also discuss different regimes of charged particle motion in the reconnected current sheet for wide parameter ranges.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7


  1. Alexander, D., Metcalf, T.R.: 2002, Energy dependence of electron trapping in a solar flare. Solar Phys. 210, 323. DOI .

  2. Altyntsev, A.T., Fleishman, G.D., Huang, G.-L., Melnikov, V.F.: 2008, A broadband microwave burst produced by electron beams. Astrophys. J. 677, 1367. DOI .

  3. Angelopoulos, V., Baumjohann, W., Kennel, C.F., Coronti, F.V., Kivelson, M.G., Pellat, R., Walker, R.J., Luehr, H., Paschmann, G.: 1992, Bursty bulk flows in the inner central plasma sheet. J. Geophys. Res. 97, 4027. DOI .

  4. Arons, J.: 2012, Pulsar wind nebulae as cosmic pevatrons: A current sheet’s tale. Space Sci. Rev. 173, 341. DOI .

  5. Artemyev, A.V., Neishtadt, A.I., Zelenyi, L.M.: 2013a, Ion motion in the current sheet with sheared magnetic field – Part 1: Quasi-adiabatic theory. Nonlinear Proc. Geophys. 20, 163. DOI .

  6. Artemyev, A.V., Neishtadt, A.I., Zelenyi, L.M.: 2013b, Ion motion in the current sheet with sheared magnetic field – Part 2: Non-adiabatic effects. Nonlinear Proc. Geophys. 20, 899. DOI .

  7. Artemyev, A.V., Neishtadt, A.I., Zelenyi, L.M.: 2014, Rapid geometrical chaotization in slow-fast Hamiltonian systems. Phys. Rev. E 89, 060902. DOI .

  8. Artemyev, A.V., Zelenyi, L.M., Petrukovich, A.A., Nakamura, R.: 2011, Hot electrons as tracers of large-scale structure of magnetotail current sheets. Geophys. Res. Lett. 38, L14102. DOI .

  9. Artemyev, A.V., Hoshino, M., Lutsenko, V.N., Petrukovich, A.A., Imada, S., Zelenyi, L.M.: 2013c, Double power-law spectra of energetic electrons in the Earth magnetotail. Ann. Geophys. 31, 91. DOI .

  10. Aschwanden, M.J.: 2002, Particle acceleration and kinematics in solar flares – A synthesis of recent observations and theoretical concepts. Space Sci. Rev. 101, 1. DOI .

  11. Aschwanden, M.J.: 2004, Pulsed particle injection in a reconnection-driven dynamic trap model in solar flares. Astrophys. J. 608, 554. DOI .

  12. Aschwanden, M.J., Wills, M.J., Hudson, H.S., Kosugi, T., Schwartz, R.A.: 1996, Electron time-of-flight distances and flare loop geometries compared from CGRO and YOHKOH observations. Astrophys. J. 468, 398. DOI .

  13. Ashour-Abdalla, M., Berchem, J.P., Buechner, J., Zelenyi, L.M.: 1993, Shaping of the magnetotail from the mantle – Global and local structuring. J. Geophys. Res. 98, 5651. DOI .

  14. Ashour-Abdalla, M., Zelenyi, L.M., Peroomian, V., Richard, R.L.: 1994, Consequences of magnetotail ion dynamics. J. Geophys. Res. 99, 14891. DOI .

  15. Aurass, H., Vršnak, B., Mann, G.: 2002, Shock-excited radio burst from reconnection outflow jet? Astron. Astrophys. 384, 273. DOI .

  16. Benz, A.O., Grigis, P.C., Battaglia, M.: 2006, Particle acceleration in solar flares: Observations versus numerical simulations. Plasma Phys. Control. Fusion 48, 115. DOI .

  17. Birn, J., Artemyev, A.V., Baker, D.N., Echim, M., Hoshino, M., Zelenyi, L.M.: 2012, Particle acceleration in the magnetotail and aurora. Space Sci. Rev. 173, 49. DOI .

  18. Blackman, E.G.: 1997, Distinguishing solar flare types by differences in reconnection regions. Astrophys. J. Lett. 484, L79. DOI .

  19. Bogachev, S.A., Somov, B.V.: 2007, Formation of power-law electron spectra in collapsing magnetic traps. Astron. Lett. 33, 54. DOI .

  20. Bogachev, S.A., Somov, B.V., Kosugi, T., Sakao, T.: 2005, The motions of the hard X-ray sources in solar flares: Images and statistics. Astrophys. J. 630, 561. DOI .

  21. Büchner, J., Zelenyi, L.M.: 1986, Deterministic chaos in the dynamics of charged particles near a magnetic field reversal. Phys. Lett. A 118, 395. DOI .

  22. Büchner, J., Zelenyi, L.M.: 1989, Regular and chaotic charged particle motion in magnetotaillike field reversals. I – Basic theory of trapped motion. J. Geophys. Res. 94, 11821. DOI .

  23. Bulanov, S.V.: 1980, The energy spectrum of particles accelerated near a singular magnetic field line. Sov. Astron. Lett. 6, 206.

  24. Bulanov, S.V., Sasorov, P.V.: 1976, Energy spectrum of particles accelerated in the neighborhood of a line of zero magnetic field. Soviet Astron. 19, 464.

  25. Burge, C.A., MacKinnon, A.L., Petkaki, P.: 2014, Effect of binary collisions on electron acceleration in magnetic reconnection. Astron. Astrophys. 561, A107. DOI .

  26. Burkhart, G.R., Drake, J.F., Chen, J.: 1990, Magnetic reconnection in collisionless plasmas – Prescribed fields. J. Geophys. Res. 95, 18833. DOI .

  27. Cargill, P.J.: 2001, Theories of heating and particle acceleration in the solar corona. Adv. Space Res. 26, 1759. DOI .

  28. Carmichael, H.: 1964, A process for flares. In: Hess, W.N. (ed.) AAS-NASA Symposium on the Physics of Solar Flares, NASA SP-50, 451.

  29. Chen, J.: 1992, Nonlinear dynamics of charged particles in the magnetotail. J. Geophys. Res. 97, 15011. DOI .

  30. Chen, J., Palmadesso, P.J.: 1986, Chaos and nonlinear dynamics of single-particle orbits in a magnetotaillike magnetic field. J. Geophys. Res. 91, 1499. DOI .

  31. Chirikov, B.V.: 1979, A universal instability of many-dimensional oscillator systems. Phys. Rep. 52, 263. DOI .

  32. Chirikov, B.V.: 1987, Particle dynamics in magnetic traps. In: Kadomtsev, B.B. (ed.) Reviews of Plasma Physics 13, Consultants Bureau, New York, 1.

  33. Cranmer, S.R., Field, G.B., Kohl, J.L.: 1999, Spectroscopic constraints on models of ion cyclotron resonance heating in the polar solar corona and high-speed solar wind. Astrophys. J. 518, 937. DOI .

  34. de Jager, C., de Jonge, G.: 1978, Properties of elementary flare bursts. Solar Phys. 58, 127. DOI .

  35. Delcourt, D.C., Malova, H.V., Zelenyi, L.M.: 2004, Dynamics of charged particles in bifurcated current sheets: The κ≈1 regime. J. Geophys. Res. 109, 1222. DOI .

  36. Divin, A., Markidis, S., Lapenta, G., Semenov, V.S., Erkaev, N.V., Biernat, H.K.: 2010, Model of electron pressure anisotropy in the electron diffusion region of collisionless magnetic reconnection. Phys. Plasmas 17, 122102. DOI .

  37. Drake, J.F., Swisdak, M., Che, H., Shay, M.A.: 2006, Electron acceleration from contracting magnetic islands during reconnection. Nature 443, 553. DOI .

  38. Dungey, J.W.: 1961, Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6, 47. DOI .

  39. Dungey, J.W.: 1963, Interactions of solar plasma with the geomagnetic field. Planet. Space Sci. 10, 233. DOI .

  40. Esser, R., Fineschi, S., Dobrzycka, D., Habbal, S.R., Edgar, R.J., Raymond, J.C., Kohl, J.L., Guhathakurta, M.: 1999, Plasma properties in coronal holes derived from measurements of minor ion spectral lines and polarized white light intensity. Astrophys. J. 510, 63. DOI .

  41. Frank, A.G.: 2010, Dynamics of current sheets underlying flare-type events in magnetized plasmas. Phys. Usp. 53, 941. DOI .

  42. Galeev, A.A.: 1979, Reconnection in the magnetotail. Space Sci. Rev. 23, 411. DOI .

  43. Gosling, J.T.: 2012, Magnetic reconnection in the solar wind. Space Sci. Rev. 172, 187. DOI .

  44. Grechnev, V.V., Kundu, M.R., Nindos, A.: 2006, A study of accelerated electrons in solar flares using microwave and X-ray observations. Publ. Astron. Soc. Japan 58, 47. DOI .

  45. Grigis, P.C., Benz, A.O.: 2005, The evolution of reconnection along an arcade of magnetic loops. Astrophys. J. Lett. 625, 143. DOI .

  46. Grigis, P.C., Benz, A.O.: 2006, Electron acceleration in solar flares: Theory of spectral evolution. Astron. Astrophys. 458, 641. DOI .

  47. Grigorenko, E.E., Hoshino, M., Hirai, M., Mukai, T., Zelenyi, L.M.: 2009, “Geography” of ion acceleration in the magnetotail: X-line versus current sheet effects. J. Geophys. Res. 114, A03203. DOI .

  48. Grigorenko, E.E., Zelenyi, L.M., Dolgonosov, M.S., Artemiev, A.V., Owen, C.J., Sauvaud, J.-A., Hoshino, M., Hirai, M.: 2011, Non-adiabatic ion acceleration in the Earth magnetotail and its various manifestations in the plasma sheet boundary layer. Space Sci. Rev. 164, 133. DOI .

  49. Guo, J.-N., Büchner, J., Otto, A., Santos, J., Marsch, E., Gan, W.-Q.: 2010, Is the 3-D magnetic null point with a convective electric field an efficient particle accelerator? Astron. Astrophys. 513, A73. DOI .

  50. Haerendel, G.: 2012, Solar auroras. Astrophys. J. 749, 166. DOI .

  51. Hannah, I.G., Kontar, E.P.: 2011, The spectral difference between solar flare HXR coronal and footpoint sources due to wave-particle interactions. Astron. Astrophys. 529, A109. DOI .

  52. Hara, H., Nishino, Y., Ichimoto, K., Delaboudinière, J.-P.: 2006, A spectroscopic observation of a magnetic reconnection site in a small flaring event. Astrophys. J. 648, 712. DOI .

  53. Hara, H., Watanabe, T., Harra, L.K., Culhane, J.L., Young, P.R.: 2011, Plasma motions and heating by magnetic reconnection in a 2007 May 19 flare. Astrophys. J. 741, 107. DOI .

  54. Hirayama, T.: 1974, Theoretical model of flares and prominences. I: Evaporating flare model. Solar Phys. 34, 323. DOI .

  55. Holman, G.D., Aschwanden, M.J., Aurass, H., Battaglia, M., Grigis, P.C., Kontar, E.P., Liu, W., Saint-Hilaire, P., Zharkova, V.V.: 2011, Implications of X-ray observations for electron acceleration and propagation in solar flares. Space Sci. Rev. 159, 107. DOI .

  56. Horton, W.: 1997, Chaos and structures in the magnetosphere. Phys. Rep. 283, 265. DOI .

  57. Horton, W., Tajima, T.: 1990, Decay of correlations and the collisionless conductivity in the geomagnetic tail. Geophys. Res. Lett. 17, 123. DOI .

  58. Horton, W., Hernandez, J., Tajima, T.: 1995, Collisionless resistivity and velocity power spectrum for the geomagnetic tail. In: Ashour-Abdalla, M., Chang, T., Dusenbery, P. (eds.) Space Plasmas: Coupling Between Small and Medium Scale Processes, AGU Geophys. Monogr. 86, 223.

  59. Hoshino, M.: 2005, Electron surfing acceleration in magnetic reconnection. J. Geophys. Res. 110, A10215. DOI .

  60. Hoshino, M.: 2012, Stochastic particle acceleration in multiple magnetic islands during reconnection. Phys. Rev. Lett. 108, 135003. DOI .

  61. Innes, D.E., Inhester, B., Axford, W.I., Wilhelm, K.: 1997, Bi-directional plasma jets produced by magnetic reconnection on the Sun. Nature 386, 811. DOI .

  62. Ishikawa, S., Krucker, S., Takahashi, T., Lin, R.P.: 2011, On the relation of above-the-loop and footpoint hard X-ray sources in solar flares. Astrophys. J. 737, 48. DOI .

  63. Isobe, H., Shibata, K.: 2009, Reconnection in solar flares: Outstanding questions. J. Astrophys. Astron. 30, 79. DOI .

  64. Isobe, H., Takasaki, H., Shibata, K.: 2005, Measurement of the energy release rate and the reconnection rate in solar flares. Astrophys. J. 632, 1184. DOI .

  65. Karlický, M., Bárta, M.: 2011, Successive merging of plasmoids and fragmentation in a flare current sheet and their X-ray and radio signatures. Astrophys. J. 733, 107. DOI .

  66. Kissinger, J., McPherron, R.L., Hsu, T.-S., Angelopoulos, V.: 2012, Diversion of plasma due to high pressure in the inner magnetosphere during steady magnetospheric convection. J. Geophys. Res. 117, 5206. DOI .

  67. Kohl, J.L., Noci, G., Antonucci, E., Tondello, G., Huber, M.C.E., Gardner, L.D., Nicolosi, P., Strachan, L., Fineschi, S., Raymond, J.C., Romoli, M., Spadaro, D., Panasyuk, A., Siegmund, O.H.W., Benna, C., Ciaravella, A., Cranmer, S.R., Giordano, S., Karovska, M., Martin, R., Michels, J., Modigliani, A., Naletto, G., Pernechele, C., Poletto, G., Smith, P.L.: 1997, First results from the SOHO Ultraviolet Coronagraph Spectrometer. Solar Phys. 175, 613. DOI .

  68. Kohl, J.L., Noci, G., Antonucci, E., Tondello, G., Huber, M.C.E., Cranmer, S.R., Strachan, L., Panasyuk, A.V., Gardner, L.D., Romoli, M., Fineschi, S., Dobrzycka, D., Raymond, J.C., Nicolosi, P., Siegmund, O.H.W., Spadaro, D., Benna, C., Ciaravella, A., Giordano, S., Habbal, S.R., Karovska, M., Li, X., Martin, R., Michels, J.G., Modigliani, A., Naletto, G., O’Neal, R.H., Pernechele, C., Poletto, G., Smith, P.L., Suleiman, R.M.: 1998, UVCS/SOHO empirical determinations of anisotropic velocity distributions in the solar corona. Astrophys. J. 501, L127. DOI .

  69. Kontar, E.P., Hannah, I.G., Bian, N.H.: 2011, Acceleration, magnetic fluctuations, and cross-field transport of energetic electrons in a solar flare loop. Astrophys. J. Lett. 730, L22. DOI .

  70. Kopp, R.A., Pneuman, G.W.: 1976, Magnetic reconnection in the corona and the loop prominence phenomenon. Solar Phys. 50, 85. DOI .

  71. Kronberg, E.A., Haaland, S.E., Daly, P.W., Grigorenko, E.E., Kistler, L.M., Fränz, M., Dandouras, I.: 2012, Oxygen and hydrogen ion abundance in the near-Earth magnetosphere: Statistical results on the response to the geomagnetic and solar wind activity conditions. J. Geophys. Res. 117, A12208. DOI .

  72. Krucker, S., Battaglia, M.: 2014, Particle densities within the acceleration region of a solar flare. Astrophys. J. 780, 107. DOI .

  73. Krucker, S., Hurford, G.J., MacKinnon, A.L., Shih, A.Y., Lin, R.P.: 2008, Coronal γ-ray bremsstrahlung from solar flare-accelerated electrons. Astrophys. J. Lett. 678, L63. DOI .

  74. Krucker, S., Hudson, H.S., Glesener, L., White, S.M., Masuda, S., Wuelser, J.-P., Lin, R.P.: 2010, Measurements of the coronal acceleration region of a solar flare. Astrophys. J. 714, 1108. DOI .

  75. Kudryavtsev, I.V., Charikov, Y.E.: 2012, Hard X rays of relativistic electrons accelerated in solar flares. Geomagn. Aeron. 52, 875. DOI .

  76. Landau, L.D., Lifshitz, E.M.: 1988, Course of Theoretical Physics, Vol. 1: Mechanics, Pergamon, Oxford, 154.

  77. Li, Y., Lin, J.: 2012, Acceleration of electrons and protons in reconnecting current sheets including single or multiple X-points. Solar Phys. 279, 91. DOI .

  78. Li, L., Zhang, J.: 2009, Observations of the magnetic reconnection signature of an M2 flare on 2000 March 23. Astrophys. J. 703, 877. DOI .

  79. Lin, R.P. (Rhessi Team): 2003, RHESSI observations of particle acceleration in solar flares. Adv. Space Res. 32, 1001. DOI .

  80. Lin, R.P., Krucker, S., Hurford, G.J., Smith, D.M., Hudson, H.S., Holman, G.D., Schwartz, R.A., Dennis, B.R., Share, G.H., Murphy, R.J., Emslie, A.G., Johns-Krull, C., Vilmer, N.: 2003, RHESSI observations of particle acceleration and energy release in an intense solar gamma-ray line flare. Astrophys. J. Lett. 595, L69. DOI .

  81. Litvinenko, Y.E.: 1996, Particle acceleration in reconnecting current sheets with a nonzero magnetic field. Astrophys. J. 462, 997. DOI .

  82. Litvinenko, Y.E.: 2003a, Particle acceleration by a time-varying electric field in merging magnetic fields. Solar Phys. 216, 189. DOI .

  83. Litvinenko, Y.E.: 2003b, Particle acceleration by magnetic reconnection. In: Klein, L. (ed.) Energy Conversion and Particle Acceleration in the Solar Corona, Lecture Notes in Physics 612, Springer, Berlin, 213.

  84. Litvinenko, Y.E.: 2006, Three-dimensional fan magnetic reconnection and particle acceleration in the solar corona. Astron. Astrophys. 452, 1069. DOI .

  85. Litvinenko, Y.E., Somov, B.V.: 1993, Particle acceleration in reconnecting current sheets. Solar Phys. 146, 127. DOI .

  86. Litvinenko, Y.E., Somov, B.V.: 1995, Relativistic acceleration of protons in reconnecting current sheets of solar flares. Solar Phys. 158, 317. DOI .

  87. Liu, W., Chen, Q., Petrosian, V.: 2013, Plasmoid ejections and loop contractions in an eruptive M7.7 solar flare: Evidence of particle acceleration and heating in magnetic reconnection outflows. Astrophys. J. 767, 168. DOI .

  88. Liu, W., Petrosian, V., Dennis, B.R., Jiang, Y.W.: 2008, Double coronal hard and soft X-ray source observed by RHESSI: Evidence for magnetic reconnection and particle acceleration in solar flares. Astrophys. J. 676, 704. DOI .

  89. Liu, C., Lee, J., Jing, J., Liu, R., Deng, N., Wang, H.: 2010a, Motions of hard X-ray sources during an asymmetric eruption. Astrophys. J. Lett. 721, L193. DOI .

  90. Liu, R., Lee, J., Wang, T., Stenborg, G., Liu, C., Wang, H.: 2010b, A reconnecting current sheet imaged in a solar flare. Astrophys. J. Lett. 723, L28. DOI .

  91. Lyons, L.R., Speiser, T.W.: 1982, Evidence for current sheet acceleration in the geomagnetic tail. J. Geophys. Res. 87, 2276. DOI .

  92. Masada, Y., Nagataki, S., Shibata, K., Terasawa, T.: 2010, Solar-type magnetic reconnection model for magnetar giant flares. Publ. Astron. Soc. Japan 62, 1093. DOI .

  93. Masuda, S., Kosugi, T., Hudson, H.S.: 2001, A hard X-ray two-ribbon flare observed with Yohkoh/HXT. Solar Phys. 204, 55. DOI .

  94. Masuda, S., Kosugi, T., Hara, H., Tsuneta, S., Ogawara, Y.: 1994, A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection. Nature 371, 495. DOI .

  95. Melia, F., Kowalenko, V.: 2001, Magnetic field dissipation in converging flows. Mon. Not. Roy. Astron. Soc. 327, 1279. DOI .

  96. Melnikov, V.F., Shibasaki, K., Reznikova, V.E.: 2002, Loop-top nonthermal microwave source in extended solar flaring loops. Astrophys. J. Lett. 580, L185. DOI .

  97. Metcalf, T.R., Alexander, D.: 1999, Coronal trapping of energetic flare particles: Yohkoh/HXT observations. Astrophys. J. 522, 1108. DOI .

  98. Narukage, N., Shibata, K.: 2006, Statistical analysis of reconnection inflows in solar flares observed with SOHO EIT. Astrophys. J. 637, 1122. DOI .

  99. Neishtadt, A.I.: 1986, Change of an adiabatic invariant at a separatrix. Sov. J. Plasma Phys. 12, 568.

  100. Neishtadt, A.: 1987, On the change in the adiabatic invariant on crossing a separatrix in systems with two degrees of freedom. J. Appl. Math. Mech. 51, 586. DOI .

  101. Ng, J., Egedal, J., Le, A., Daughton, W.: 2012, Phase space structure of the electron diffusion region in reconnection with weak guide fields. Phys. Plasmas 19, 112108. DOI .

  102. Ning, Z., Cao, W.: 2009, Spatial and spectral behaviors of solar flares observed in microwaves. Solar Phys. 257, 335. DOI .

  103. Northrop, T.G.: 1963, The Adiabatic Motion of Charged Particles, Wiley, New York.

  104. Numata, R., Yoshida, Z.: 2002, Chaos-induced resistivity in collisionless magnetic reconnection. Phys. Rev. Lett. 88, 045003. DOI .

  105. Numata, R., Yoshida, Z.: 2003, Chaos-induced resistivity in the magnetic null region: A nonlinear mechanism of collisionless dissipation. Phys. Rev. E 68, 016407. DOI .

  106. Ohyama, M., Shibata, K.: 1997, Preflare heating and mass motion in a solar flare associated with hot plasma ejection: 1993 November 11 C9.7 flare. Publ. Astron. Soc. Japan 49, 249. DOI .

  107. Parker, E.N.: 1994, Spontaneous Current Sheets in Magnetic Fields: With Applications to Stellar X-rays, Oxford University Press, New York.

  108. Parnell, C.E., Haynes, A.L., Maclean, R.C.: 2011, Three dimensional magnetic reconnection at null points and separators. In: Miralles, M.P., Sánchez Almeida, J. (eds.) The Sun, the Solar Wind, and the Heliosphere, Springer, Berlin, 147.

  109. Paschmann, G., Øieroset, M., Phan, T.: 2013, In-situ observations of reconnection in space. Space Sci. Rev. 178, 385. DOI .

  110. Pellat, R., Schmidt, G.: 1979, Absence of particle drift in magnetic fields of translational symmetry. Phys. Fluids 22, 381. DOI .

  111. Pellat, R., Coroniti, F.V., Pritchett, P.L.: 1991, Does ion tearing exist? Geophys. Res. Lett. 18, 143. DOI .

  112. Petrosian, V., Chen, Q.: 2010, Derivation of stochastic acceleration model characteristics for solar flares from RHESSI hard X-ray observations. Astrophys. J. Lett. 712, L131. DOI .

  113. Petrosian, V., Donaghy, T.Q.: 1999, On the spatial distribution of hard X-rays from solar flare loops. Astrophys. J. 527, 945. DOI .

  114. Petrosian, V., Donaghy, T.Q., McTiernan, J.M.: 2002, Loop top hard X-ray emission in solar flares: Images and statistics. Astrophys. J. 569, 459. DOI .

  115. Priest, E.R., Forbes, T.G.: 2002, The magnetic nature of solar flares. Astron. Astrophys. Rev. 10, 313. DOI .

  116. Reeves, K.K., Guild, T.B., Hughes, W.J., Korreck, K.E., Lin, J., Raymond, J., Savage, S., Schwadron, N.A., Spence, H.E., Webb, D.F., Wiltberger, M.: 2008, Posteruptive phenomena in coronal mass ejections and substorms: Indicators of a universal process? J. Geophys. Res. 113, A00B02. DOI .

  117. Reid, H.A.S., Vilmer, N., Kontar, E.P.: 2011, Characteristics of the flare acceleration region derived from simultaneous hard X-ray and radio observations. Astron. Astrophys. 529, A66. DOI .

  118. Reznikova, V.E., Melnikov, V.F., Shibasaki, K., Gorbikov, S.P., Pyatakov, N.P., Myagkova, I.N., Ji, H.: 2009, 2002 August 24 limb flare loop: Dynamics of microwave brightness distribution. Astrophys. J. 697, 735. DOI .

  119. Sakai, J.-I., de Jager, C.: 1996, Solar flares and collisions between current-carrying loops types and mechanisms of solar flares and coronal loop heating. Space Sci. Rev. 77, 1. DOI .

  120. Savage, S.L., Holman, G., Reeves, K.K., Seaton, D.B., McKenzie, D.E., Su, Y.: 2012, Low-altitude reconnection inflow-outflow observations during a 2010 November 3 solar eruption. Astrophys. J. 754, 13. DOI .

  121. Selkowitz, R., Blackman, E.G.: 2007, The shock-reprocessing model of electron acceleration in impulsive solar flares. Mon. Not. Roy. Astron. Soc. 379, 43. DOI .

  122. Shibata, K.: 1999, Solar flares, jets, and helicity. In: Brown, M.R., Canfield, R.C., Pevtsov, A.A. (eds.) Magnetic Helicity in Space and Laboratory Plasmas, AGU Geophys. Monogr. 111, 229. DOI .

  123. Shibata, K., Magara, T.: 2011, Solar flares: Magnetohydrodynamic processes. Living Rev. Solar Phys. 8(6). http://solarphysics.livingreviews.org/Articles/lrsp-2011-6/ . DOI .

  124. Shimizu, M., Nishida, K., Takasaki, H., Shiota, D., Magara, T., Shibata, K.: 2008, The correlation among the rise velocity of a soft X-ray loop, the ejection velocity of a plasmoid, and the height above the loop top of the hard X-ray source in Masuda-type flares, and its interpretation based on the reconnection model of flares. Astrophys. J. Lett. 683, L203. DOI .

  125. Sivukhin, D.V.: 1965, Motion of charged particles in electromagnetic fields in the drift approximation. In: Leontovich, M.A. (ed.) Reviews of Plasma Physics 1, Consultants Bureau, New York, 1.

  126. Slemzin, V., Harra, L., Urnov, A., Kuzin, S., Goryaev, F., Berghmans, D.: 2013, Signatures of slow solar wind streams from active regions in the inner corona. Solar Phys. 286, 157. DOI .

  127. Somov, B.V., Kosugi, T.: 1997, Collisionless reconnection and high-energy particle acceleration in solar flares. Astrophys. J. 485, 859. DOI .

  128. Somov, B.V., Kosugi, T., Sakao, T.: 1998, Collisionless three-dimensional reconnection in impulsive solar flares. Astrophys. J. 497, 943. DOI .

  129. Somov, B.V., Kosugi, T., Masuda, S., Sakao, T.: 2000, Basic physics of collisionless three-dimensional reconnection in the solar corona related to Yohkoh observations. Adv. Space Res. 25, 1821. DOI .

  130. Somov, B.V., Kosugi, T., Bogachev, S.A., Masuda, S., Sakao, T.: 2005, On upward motions of coronal hard X-ray sources in solar flares. Adv. Space Res. 35, 1690. DOI .

  131. Speiser, T.W.: 1967, Particle trajectories in model current sheets: 2. Applications to auroras using a geomagnetic tail model. J. Geophys. Res. 72, 3919. DOI .

  132. Stanier, A., Browning, P., Dalla, S.: 2012, Solar particle acceleration at reconnecting 3D null points. Astron. Astrophys. 542, A47. DOI .

  133. Sturrock, P.A.: 1966, Model of the high-energy phase of solar flares. Nature 211, 695. DOI .

  134. Su, Y., Golub, L., Van Ballegooijen, A.A.: 2007, A statistical study of shear motion of the footpoints in two-ribbon flares. Astrophys. J. 655, 606. DOI .

  135. Su, Y., Veronig, A.M., Holman, G.D., Dennis, B.R., Wang, T., Temmer, M., Gan, W.: 2013, Imaging coronal magnetic-field reconnection in a solar flare. Nature Phys. 9, 489. DOI .

  136. Sui, L., Holman, G.D.: 2003, Evidence for the formation of a large-scale current sheet in a solar flare. Astrophys. J. 596, 251. DOI .

  137. Sui, L., Holman, G.D., Dennis, B.R.: 2004, Evidence for magnetic reconnection in three homologous solar flares observed by RHESSI. Astrophys. J. 612, 546. DOI .

  138. Syrovatskiı̌, S.I.: 1971, Formation of current sheets in a plasma with a frozen-in strong magnetic field. Sov. Phys. JETP 33, 933.

  139. Takasao, S., Asai, A., Isobe, H., Shibata, K.: 2012, Simultaneous observation of reconnection inflow and outflow associated with the 2010 August 18 solar flare. Astrophys. J. Lett. 745, L6. DOI .

  140. Tanaka, K.G., Fujimoto, M., Badman, S.V., Shinohara, I.: 2011, Dynamic magnetic island coalescence and associated electron acceleration. Phys. Plasmas 18, 022903. DOI .

  141. Tanuma, S., Yokoyama, T., Kudoh, T., Shibata, K.: 2003, Magnetic reconnection triggered by the Parker instability in the galaxy: Two-dimensional numerical magnetohydrodynamic simulations and application to the origin of X-ray gas in the galactic halo. Astrophys. J. 582, 215. DOI .

  142. Temmer, M., Veronig, A.M., Vršnak, B., Miklenic, C.: 2007, Energy release rates along Hα flare ribbons and the location of hard X-ray sources. Astrophys. J. 654, 665. DOI .

  143. Terasawa, T., Shibata, K., Scholer, M.: 2000, Comparative study of flares and substorms. Adv. Space Res. 26, 573. DOI .

  144. Tomczak, M.: 2001, The analysis of hard X-ray radiation of flares with occulted footpoints. Astron. Astrophys. 366, 294. DOI .

  145. Tomczak, M.: 2009, The YOHKOH survey of partially occulted flares in hard X-rays. Astron. Astrophys. 502, 665. DOI .

  146. Tomczak, M., Ciborski, T.: 2007, Footpoint versus loop-top hard X-ray emission sources in solar flares. Astron. Astrophys. 461, 315. DOI .

  147. Tsuneta, S.: 1996, Structure and dynamics of magnetic reconnection in a solar flare. Astrophys. J. 456, 840. DOI .

  148. Tsuneta, S.: 1997, Moving plasmoid and formation of the neutral sheet in a solar flare. Astrophys. J. 483, 507. DOI .

  149. Tsuneta, S., Naito, T.: 1998, Fermi acceleration at the fast shock in a solar flare and the impulsive loop-top hard X-ray source. Astrophys. J. Lett. 495, L67. DOI .

  150. Tsuneta, S., Masuda, S., Kosugi, T., Sato, J.: 1997, Hot and superhot plasmas above an impulsive flare loop. Astrophys. J. 478, 787. DOI .

  151. Tverskoy, B.A.: 1969, Main mechanisms in the formation of the Earth’s radiation belts. Rev. Geophys. Space Phys. 7, 219. DOI .

  152. Uzdensky, D.A.: 2007, The fast collisionless reconnection condition and the self-organization of solar coronal heating. Astrophys. J. 671, 2139. DOI .

  153. van Beek, H.F., de Feiter, L.D., de Jager, C.: 1974, Time profiles and photon spectra of solar hard X-rays. In: Page, D.E. (ed.) Correlated Interplanetary and Magnetospheric Observations, Reidel, Dordrecht, 533.

  154. Vorpahl, J.A.: 1976, Energy storage and deposition in a solar flare. Solar Phys. 47, 147. DOI .

  155. Vršnak, B., Klein, K.-L., Warmuth, A., Otruba, W., Skender, M.: 2003, Vertical dynamics of the energy release process in a simple two-ribbon flare. Solar Phys. 214, 325. DOI .

  156. Warren, H.P., Reeves, K.K.: 2001, High spatial resolution observations of a hot region in a solar flare with the transition region and coronal explorer. Astrophys. J. Lett. 554, L103. DOI .

  157. Wheatland, M.S., Craig, I.J.D.: 2003, Toward a reconnection model for solar flare statistics. Astrophys. J. 595, 458. DOI .

  158. Wu, G., Huang, G., Ji, H.: 2010, Dependence of the anomalous resistivity on the induced electric field in solar flares. Astrophys. J. 720, 771. DOI .

  159. Yamada, M., Kulsrud, R., Ji, H.: 2010, Magnetic reconnection. Rev. Mod. Phys. 82, 603. DOI .

  160. Zelenyi, L., Artemyev, A.: 2013, Mechanisms of spontaneous reconnection: From magnetospheric to fusion plasma. Space Sci. Rev. 178, 441. DOI .

  161. Zelenyi, L.M., Galeev, A., Kennel, C.F.: 1990a, Ion precipitation from the inner plasma sheet due to stochastic diffusion. J. Geophys. Res. 95, 3871. DOI .

  162. Zelenyi, L.M., Lominadze, J.G., Taktakishvili, A.L.: 1990b, Generation of the energetic proton and electron bursts in planetary magnetotails. J. Geophys. Res. 95, 3883. DOI .

  163. Zelenyi, L.M., Delcourt, D.C., Malova, H.V., Sharma, A.S.: 2002, “Aging” of the magnetotail thin current sheets. Geophys. Res. Lett. 29, 1608. DOI .

  164. Zelenyi, L.M., Dolgonosov, M.S., Peroomian, V., Ashour-Abdalla, M.: 2006, Effects of nonlinearity on the structure of PSBL beamlets. Geophys. Res. Lett. 33, L18103. DOI .

  165. Zelenyi, L.M., Artemyev, A.V., Malova, H.V., Popov, V.Y.: 2008, Marginal stability of thin current sheets in the Earth’s magnetotail. J. Atmos. Solar-Terr. Phys. 70, 325. DOI .

  166. Zelenyi, L.M., Artemyev, A.V., Malova, K.V., Petrukovich, A.A., Nakamura, R.: 2010, Metastability of current sheets. Phys. Usp. 53, 933. DOI .

  167. Zelenyi, L.M., Neishtadt, A.I., Artemyev, A.V., Vainchtein, D.L., Malova, H.V.: 2013, Quasiadiabatic dynamics of charged particles in a space plasma. Phys. Usp. 56, 347. DOI .

  168. Zharkova, V.V., Gordovskyy, M.: 2004, Particle acceleration asymmetry in a reconnecting nonneutral current sheet. Astrophys. J. 604, 884. DOI .

  169. Zharkova, V.V., Arzner, K., Benz, A.O., Browning, P., Dauphin, C., Emslie, A.G., Fletcher, L., Kontar, E.P., Mann, G., Onofri, M., Petrosian, V., Turkmani, R., Vilmer, N., Vlahos, L.: 2011, Recent advances in understanding particle acceleration processes in solar flares. Space Sci. Rev. 159, 357. DOI .

  170. Zimovets, I.V., Struminsky, A.B.: 2009, Imaging observations of quasi-periodic pulsatory nonthermal emission in two-ribbon solar flares. Solar Phys. 258, 69. DOI .

Download references


The work was supported in part by the RFBR 13-01-00251 (A.V.A.), RFBR 13-02-91165 (I.V.Z.), and by the grant NSh-2964.2014.1 (A.I.N.)

Author information

Correspondence to A. V. Artemyev.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Artemyev, A.V., Neishtadt, A.I., Zimovets, I.V. et al. Chaotic Charged Particle Motion and Acceleration in Reconnected Current Sheet. Sol Phys 290, 787–810 (2015). https://doi.org/10.1007/s11207-014-0639-y

Download citation


  • Charged particle motion
  • Current sheet
  • Magnetic reconnection