Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

STEREO-Wind Radio Positioning of an Unusually Slow Drifting Event


On 13 March 2010 an unusually long-duration event was observed by radio spectrographs onboard the STEREO-B and Wind spacecraft. The event started at about 13:00 UT and ended at approximately 06:00 UT on 14 March. The event presents itself as slow drifting, quasi-continuous emission in a very narrow frequency interval, with an apparent frequency drift from about 625 kHz to approximately 425 kHz. Using the Leblanc, Dulk, and Bougeret (Solar Phys. 183, 165, 1998) interplanetary density model, we determined that the drift velocities of the radio source are ≈ 33 km s−1 and ≈ 52 km s−1 for 0.2 and 0.5 times the densities of Leblanc model, respectively, with a normalization density of 7.2 cm−3 at 1 AU and assuming harmonic emission. A joint analysis of the radio direction-finding data, coronograph white-light observations and modeling revealed that the radio sources appear to be located in interaction regions with relatively high density and slow solar wind speed.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4


  1. 1.

    The projections onto the ecliptic or equatorial plane are used in the triangulation process because in general the two vectors strictly do not intersect (e.g. Martínez-Oliveros et al. 2012; Liu et al. 2010).

  2. 2.

    The SHILLELAgh software is available as a GIT repository: https://github.com/pohuigin/SHILLELAGH .


  1. Bain, H.M., Krucker, S., Glesener, L., Lin, R.P.: 2012, Radio imaging of shock-accelerated electrons associated with an erupting plasmoid on 2010 November 3. Astrophys. J. 750, 44. DOI .

  2. Bale, S.D., Reiner, M.J., Bougeret, J., Kaiser, M.L., Krucker, S., Larson, D.E., Lin, R.P.: 1999, The source region of an interplanetary type II radio burst. Geophys. Res. Lett. 26, 1573. DOI .

  3. Bougeret, J.L., Kaiser, M.L., Kellogg, P.J., Manning, R., Goetz, K., Monson, S.J., Monge, N., Friel, L., Meetre, C.A., Perche, C., Sitruk, L., Hoang, S.: 1995, WAVES: The Radio and Plasma Wave Investigation on the Wind spacecraft. Space Sci. Rev. 71, 231. DOI .

  4. Bougeret, J.L., Goetz, K., Kaiser, M.L., Bale, S.D., Kellogg, P.J., Maksimovic, M., Monge, N., Monson, S.J., Astier, P.L., Davy, S., Dekkali, M., Hinze, J.J., Manning, R.E., Aguilar-Rodriguez, E., Bonnin, X., Briand, C., Cairns, I.H., Cattell, C.A., Cecconi, B., Eastwood, J., Ergun, R.E., Fainberg, J., Hoang, S., Huttunen, K.E.J., Krucker, S., Lecacheux, A., MacDowall, R.J., Macher, W., Mangeney, A., Meetre, C.A., Moussas, X., Nguyen, Q.N., Oswald, T.H., Pulupa, M., Reiner, M.J., Robinson, P.A., Rucker, H., Salem, C., Santolik, O., Silvis, J.M., Ullrich, R., Zarka, P., Zouganelis, I.: 2008, S/WAVES: The Radio and Plasma Wave Investigation on the STEREO mission. Space Sci. Rev. 136, 487. DOI .

  5. Cane, H.V., Stone, R.G., Fainberg, J., Steinberg, J.L., Hoang, S.: 1982, Type II solar radio events observed in the interplanetary medium. I – General characteristics. Solar Phys. 78, 187. DOI .

  6. Dauphin, C., Vilmer, N., Krucker, S.: 2006, Observations of a soft X-ray rising loop associated with a type II burst and a coronal mass ejection in the 03 November 2003 X-ray flare. Astron. Astrophys. 455, 339. DOI .

  7. Fainberg, J., Evans, L.G., Stone, R.G.: 1972, Radio tracking of solar energetic particles through interplanetary space. Science 178, 743. DOI .

  8. Fainberg, J., Hoang, S., Manning, R.: 1985, Measurements of distributed polarized radio sources from spinning spacecraft – effect of a tilted axial antenna – ISEE-3 application and results. Astron. Astrophys. 153, 145.

  9. Freeland, S.L., Handy, B.N.: 1998, Data analysis with the SolarSoft system. Solar Phys. 182, 497. DOI .

  10. Gopalswamy, N., Yashiro, S., Kaiser, M.L., Howard, R.A., Bougeret, J.: 2001, Characteristics of coronal mass ejections associated with long-wavelength type II radio bursts. J. Geophys. Res. 106, 29219. DOI .

  11. Gopalswamy, N., Thompson, W.T., Davila, J.M., Kaiser, M.L., Yashiro, S., Mäkelä, P., Michalek, G., Bougeret, J.L., Howard, R.A.: 2009, Relation between type II bursts and CMEs inferred from STEREO observations. Solar Phys. 259, 227. DOI .

  12. Gurnett, D.A., Baumback, M.M., Rosenbauer, H.: 1978, Stereoscopic direction finding analysis of a type III solar radio burst – evidence for emission at 2f p . J. Geophys. Res. 83, 616. DOI .

  13. Kahler, S.W., Cliver, E.W., Cane, H.V.: 1989, Shock-associated kilometric radio emission and solar metric type II bursts. Solar Phys. 120, 393. DOI .

  14. Krupar, V., Santolik, O., Cecconi, B., Maksimovic, M., Bonnin, X., Panchenko, M., Zaslavsky, A.: 2012, Goniopolarimetric inversion using SVD: an application to type III radio bursts observed by STEREO. J. Geophys. Res. 117, A06101. DOI .

  15. Leblanc, Y., Dulk, G.A., Bougeret, J.L.: 1998, Tracing the electron density from the corona to 1 AU. Solar Phys. 183, 165. DOI .

  16. Liewer, P.C., Hall, J.R., Howard, R.A., De Jong, E.M., Thompson, W.T., Thernisien, A.: 2011, Stereoscopic analysis of STEREO/SECCHI data for CME trajectory determination. J. Atmos. Solar-Terr. Phys. 73, 1173. DOI .

  17. Liu, Y., Luhmann, J.G., Bale, S.D., Lin, R.P.: 2009, Relationship between a coronal mass ejection-driven shock and a coronal metric type II burst. Astrophys. J. Lett. 691, L151. DOI .

  18. Liu, Y., Davies, J.A., Luhmann, J.G., Vourlidas, A., Bale, S.D., Lin, R.P.: 2010, Geometric triangulation of imaging observations to track coronal mass ejections continuously out to 1 AU. Astrophys. J. Lett. 710, L82. DOI .

  19. Liu, Y.D., Luhmann, J.G., Lugaz, N., Möstl, C., Davies, J.A., Bale, S.D., Lin, R.P.: 2013, On Sun-to-Earth propagation of coronal mass ejections. Astrophys. J. 769, 45. DOI .

  20. Martínez-Oliveros, J.C., Lindsey, C., Bale, S.D., Krucker, S.: 2012, Determination of electromagnetic source direction as an eigenvalue problem. Solar Phys. 279, 153. DOI .

  21. Möstl, C., Temmer, M., Rollett, T., Farrugia, C.J., Liu, Y., Veronig, A.M., Leitner, M., Galvin, A.B., Biernat, H.K.: 2010, STEREO and Wind observations of a fast ICME flank triggering a prolonged geomagnetic storm on 5 – 7 April 2010. Geophys. Res. Lett. 37, 24103. DOI .

  22. Mumford, S., Pérez-Suárez, D., Christe, S., Mayer, F., Hewett, R.J.: 2013, Sunpy: Python for solar physicists. In: van der Walt, S., Millman, J., Huff, K. (eds.) Proceedings of the 12th Python in Science Conference, 74.

  23. Nelson, G.J., Melrose, D.B.: 1985, In: McLean, D.J., Labrum, N.R. (eds.) Solar Radiophysics: Studies of Emission from the Sun at Metre Wavelengths, Cambridge University Press, Cambridge, 333.

  24. Reiner, M.J., Kaiser, M.L., Bougeret, J.: 2007, Coronal and interplanetary propagation of CME/shocks from radio, in situ and white-light observations. Astrophys. J. 663, 1369. DOI .

  25. Reiner, M.J., Kaiser, M.L., Fainberg, J., Bougeret, J.L., Stone, R.G.: 1997, Remote radio tracking of interplanetary CMEs. In: Wilson, A. (ed.) Correlated Phenomena at the Sun, in the Heliosphere and in Geospace, ESA SP-415, 183.

  26. Reiner, M.J., Kaiser, M.L., Fainberg, J., Stone, R.G.: 1998a, A new method for studying remote type II radio emissions from coronal mass ejection-driven shocks. J. Geophys. Res. 103, 29651. DOI .

  27. Reiner, M.J., Kaiser, M.L., Fainberg, J., Bougeret, J., Stone, R.G.: 1998b, On the origin of radio emissions associated with the January 6 – 11, 1997, CME. Geophys. Res. Lett. 25, 2493. DOI .

  28. Reiner, M.J., Fainberg, J., Kaiser, M.L., Stone, R.G.: 1998c, Type III radio source located by Ulysses/Wind triangulation. J. Geophys. Res. 103, 1923. DOI .

  29. Reiner, M.J., Vourlidas, A., Cyr, O.C.S., Burkepile, J.T., Howard, R.A., Kaiser, M.L., Prestage, N.P., Bougeret, J.L.: 2003, Constraints on coronal mass ejection dynamics from simultaneous radio and white-light observations. Astrophys. J. 590, 533. DOI .

  30. Robbrecht, E., Berghmans, D.: 2004, Automated recognition of coronal mass ejections (CMEs) in near-real-time data. Astron. Astrophys. 425, 1097. DOI .

  31. Rouillard, A.P., Davies, J.A., Forsyth, R.J., Rees, A., Davis, C.J., Harrison, R.A., Lockwood, M., Bewsher, D., Crothers, S.R., Eyles, C.J., Hapgood, M., Perry, C.H.: 2008, First imaging of corotating interaction regions using the STEREO spacecraft. Geophys. Res. Lett. 35, L10110. DOI .

  32. Santolík, O., Parrot, M., Lefeuvre, F.: 2003, Singular value decomposition methods for wave propagation analysis. Radio Sci. 38, 1010. DOI .

  33. Thejappa, G., MacDowall, R.J., Gopalswamy, N.: 2011, Effects of refraction on angles and times of arrival of solar radio bursts. Astrophys. J. 734, 16. DOI .

  34. Vršnak, B.: 2005, Terminology of large-scale waves in the solar atmosphere. Eos 86, 112. DOI .

  35. Vršnak, B., Warmuth, A., Temmer, M., Veronig, A., Magdalenić, J., Hillaris, A., Karlický, M.: 2006, Multi-wavelength study of coronal waves associated with the CME-flare event of 3 November 2003. Astron. Astrophys. 448, 739. DOI .

  36. Wild, J.P., McCready, L.L.: 1950, Observations of the spectrum of high-intensity solar radiation at metre wavelengths. I. The apparatus and spectral types of solar burst observed. Aust. J. Sci. Res., Ser. A 3, 387.

Download references


This work was supported by NASA under contract NNX12AG98G for authors Martínez Oliveros, Bain, Raftery and Krucker. V. Krupar acknowledges the support of the Czech Grant Agency grant 205-10/2279. This research has made use of SunPy, an open-source and free community-developed solar data analysis package written in Python (Mumford et al. 2013).

Author information

Correspondence to J. C. Martínez-Oliveros.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martínez-Oliveros, J.C., Raftery, C., Bain, H. et al. STEREO-Wind Radio Positioning of an Unusually Slow Drifting Event. Sol Phys 290, 891–901 (2015). https://doi.org/10.1007/s11207-014-0638-z

Download citation


  • Solar radio emission
  • Solar radio bursts, type II