Advertisement

Solar Physics

, Volume 290, Issue 3, pp 727–751 | Cite as

Evidence of Twisted Flux-Tube Emergence in Active Regions

  • M. PoissonEmail author
  • C. H. Mandrini
  • P. Démoulin
  • M. López Fuentes
Article

Abstract

Elongated magnetic polarities are observed during the emergence phase of bipolar active regions (ARs). These extended features, called magnetic tongues, are interpreted as a consequence of the azimuthal component of the magnetic flux in the toroidal flux-tubes that form ARs. We develop a new systematic and user-independent method to identify AR tongues. Our method is based on determining and analyzing the evolution of the AR main polarity inversion line (PIL). The effect of the tongues is quantified by measuring the acute angle [τ] between the orientation of the PIL and the direction orthogonal to the AR main bipolar axis. We apply a simple model to simulate the emergence of a bipolar AR. This model lets us interpret the effect of magnetic tongues on parameters that characterize ARs (e.g. the PIL inclination and the tilt angles, and their evolution). In this idealized kinematic emergence model, τ is a monotonically increasing function of the twist and has the same sign as the magnetic helicity. We systematically apply our procedure to a set of bipolar ARs (41 ARs) that were observed emerging in line-of-sight magnetograms over eight years. For most of the cases studied, the tongues only have a small influence on the AR tilt angle since tongues have a much lower magnetic flux than the more concentrated main polarities. From the observed evolution of τ, corrected for the temporal evolution of the tilt angle and its final value when the AR is fully emerged, we estimate the average number of turns in the subphotospherically emerging flux-rope. These values for the 41 observed ARs are below unity, except for one. This indicates that subphotospheric flux-ropes typically have a low amount of twist, i.e. highly twisted flux-tubes are rare. Our results demonstrate that the evolution of the PIL is a robust indicator of the presence of tongues and constrains the amount of twist in emerging flux-tubes.

Keywords

Active regions, magnetic fields Corona, structures Helicity, magnetic Helicity, observations 

Notes

Acknowledgments

CHM and MLF acknowledge financial support from the Argentinean grants PICT 2012-0973 (ANPCyT), UBACyT 20020100100733 and PIP 2009-100766 (CONICET). CHM and MLF are members of the Carrera del Investigador Científico (CONICET). MP is a fellow of CONICET. CHM thanks the Paris Observatory for a one-month invitation.

Supplementary material

(MP4 7.9 MB)

11207_2014_633_MOESM2_ESM.mp4 (5.7 mb)
(MP4 5.7 MB)
11207_2014_633_MOESM3_ESM.mp4 (6.9 mb)
(MP4 6.9 MB)
11207_2014_633_MOESM4_ESM.mp4 (11.2 mb)
(MP4 11.2 MB)

(MP4 1.8 MB)

11207_2014_633_MOESM6_ESM.mp4 (9.9 mb)
(MP4 9.9 MB)

(MP4 3.8 MB)

References

  1. Archontis, V., Hood, A.W.: 2010, Flux emergence and coronal eruption. Astron. Astrophys. 514, A56.  DOI.CrossRefADSGoogle Scholar
  2. Berger, M.A.: 1984, Rigorous new limits on magnetic helicity dissipation in the solar corona. Geophys. Astrophys. Fluid Dyn. 30, 79.CrossRefADSGoogle Scholar
  3. Bernasconi, P.N., Rust, D.M., Georgoulis, M.K., Labonte, B.J.: 2002, Moving dipolar features in an emerging flux region. Solar Phys. 209, 119. ADS.  DOI.CrossRefADSGoogle Scholar
  4. Bisoi, S.K., Janardhan, P., Chakrabarty, D., Ananthakrishnan, S., Divekar, A.: 2014, Changes in quasi-periodic variations of solar photospheric fields: precursor to the deep solar minimum in Cycle 23? Solar Phys. 289, 41. ADS.  DOI.CrossRefADSGoogle Scholar
  5. Chandra, R., Schmieder, B., Aulanier, G., Malherbe, J.M.: 2009, Evidence of magnetic helicity in emerging flux and associated flare. Solar Phys. 258, 53.  DOI.CrossRefADSGoogle Scholar
  6. Démoulin, P., Pariat, E.: 2009, Modelling and observations of photospheric magnetic helicity. Adv. Space Res. 43, 1013. ADS.  DOI.CrossRefADSGoogle Scholar
  7. Démoulin, P., Mandrini, C.H., van Driel-Gesztelyi, L., Thompson, B.J., Plunkett, S., Kovári, Z., Aulanier, G., Young, A.: 2002, What is the source of the magnetic helicity shed by CMEs? The long-term helicity budget of AR 7978. Astron. Astrophys. 382, 650.  DOI.CrossRefADSGoogle Scholar
  8. Emonet, T., Moreno-Insertis, F.: 1998, The physics of twisted magnetic tubes rising in a stratified medium: two-dimensional results. Astrophys. J. 492, 804.  DOI.CrossRefADSGoogle Scholar
  9. Fan, Y.: 2001, Nonlinear growth of the three-dimensional undular instability of a horizontal magnetic layer and the formation of arching flux tubes. Astrophys. J. 546, 509. ADS.  DOI.CrossRefADSGoogle Scholar
  10. Fan, Y.: 2009, Magnetic fields in the solar convection zone. Living Rev. Solar Phys. 6, 4. ADS.  DOI.CrossRefADSGoogle Scholar
  11. Fan, Y., Fisher, G.H., Deluca, E.E.: 1993, The origin of morphological asymmetries in bipolar active regions. Astrophys. J. 405, 390.  DOI.CrossRefADSGoogle Scholar
  12. Gosain, S., Démoulin, P., López Fuentes, M.: 2014, Distribution of electric currents in sunspots from photosphere to corona. Astrophys. J. Submitted.  DOI
  13. Green, L.M., López fuentes, M.C., Mandrini, C.H., Démoulin, P., van Driel-Gesztelyi, L., Culhane, J.L.: 2002, The magnetic helicity budget of a CME-prolific active region. Solar Phys. 208, 43.  DOI.CrossRefADSGoogle Scholar
  14. Green, L.M., Démoulin, P., Mandrini, C.H., van Driel-Gesztelyi, L.: 2003, How are emerging flux, flares and CMEs related to magnetic polarity imbalance in MDI data? Solar Phys. 215, 307. ADS.  DOI.CrossRefADSGoogle Scholar
  15. Hood, A.W., Archontis, V., MacTaggart, D.: 2012, 3D MHD flux emergence experiments: idealised models and coronal interactions. Solar Phys. 278, 3. ADS.  DOI.CrossRefADSGoogle Scholar
  16. Hood, A.W., Archontis, V., Galsgaard, K., Moreno-Insertis, F.: 2009, The emergence of toroidal flux tubes from beneath the solar photosphere. Astron. Astrophys. 503, 999.  DOI.CrossRefADSGoogle Scholar
  17. Jeong, H., Chae, J.: 2007, Magnetic helicity injection in active regions. Astrophys. J. 671, 1022.  DOI.CrossRefADSGoogle Scholar
  18. Jouve, L., Brun, A.S., Aulanier, G.: 2013, Global dynamics of subsurface solar active regions. Astrophys. J. 762, 4.  DOI.CrossRefADSGoogle Scholar
  19. Kusano, K., Maeshiro, T., Yokoyama, T., Sakurai, T.: 2004, The trigger mechanism of solar flares in a coronal arcade with reversed magnetic shear. Astrophys. J. 610, 537. ADS.CrossRefADSGoogle Scholar
  20. LaBonte, B.J., Georgoulis, M.K., Rust, D.M.: 2007, Survey of magnetic helicity injection in regions producing X-class flares. Astrophys. J. 671, 955.  DOI.CrossRefADSGoogle Scholar
  21. Li, H., Schmieder, B., Song, M.T., Bommier, V.: 2007, Interaction of magnetic field systems leading to an X1.7 flare due to large-scale flux tube emergence. Astron. Astrophys. 475, 1081.  DOI.CrossRefADSGoogle Scholar
  22. Lim, E.-K., Jeong, H., Chae, J., Moon, Y.-J.: 2007, A check for consistency between different magnetic helicity measurements based on the helicity conservation principle. Astrophys. J. 656, 1167.  DOI.CrossRefADSGoogle Scholar
  23. Liu, J., Zhang, H.: 2006, The magnetic field, horizontal motion and helicity in a fast emerging flux region which eventually forms a delta spot. Solar Phys. 234, 21.  DOI.CrossRefADSGoogle Scholar
  24. López Fuentes, M.C., Démoulin, P., Mandrini, C.H., van Driel-Gesztelyi, L.: 2000, The counterkink rotation of a non-Hale active region. Astrophys. J. 544, 540.  DOI.CrossRefADSGoogle Scholar
  25. López Fuentes, M.C., Démoulin, P., Mandrini, C.H., Pevtsov, A.A., van Driel-Gesztelyi, L.: 2003, Magnetic twist and writhe of active regions. On the origin of deformed flux tubes. Astron. Astrophys. 397, 305.  DOI.CrossRefADSGoogle Scholar
  26. Luoni, M.L., Démoulin, P., Mandrini, C.H., van Driel-Gesztelyi, L.: 2011, Twisted flux tube emergence evidenced in longitudinal magnetograms: magnetic tongues. Solar Phys. 270, 45. ADS.  DOI.CrossRefADSGoogle Scholar
  27. MacTaggart, D.: 2011, Flux emergence within mature solar active regions. Astron. Astrophys. 531, A108.  DOI.CrossRefADSGoogle Scholar
  28. Mandrini, C.H., Pohjolainen, S., Dasso, S., Green, L.M., Démoulin, P., van Driel-Gesztelyi, L., Copperwheat, C., Foley, C.: 2005, Interplanetary flux rope ejected from an X-ray bright point. The smallest magnetic cloud source-region ever observed. Astron. Astrophys. 434, 725.  DOI.CrossRefADSGoogle Scholar
  29. Murray, M.J., Hood, A.W.: 2008, Emerging flux tubes from the solar interior into the atmosphere: effects of non-constant twist. Astron. Astrophys. 479, 567.  DOI.CrossRefADSGoogle Scholar
  30. Murray, M.J., Hood, A.W., Moreno-Insertis, F., Galsgaard, K., Archontis, V.: 2006, 3D simulations identifying the effects of varying the twist and field strength of an emerging flux tube. Astron. Astrophys. 460, 909.  DOI.CrossRefADSGoogle Scholar
  31. Nakwacki, M.S., Dasso, S., Démoulin, P., Mandrini, C.H., Gulisano, A.M.: 2011, Dynamical evolution of a magnetic cloud from the Sun to 5.4 AU. Astron. Astrophys. 535, A52. ADS.  DOI.CrossRefADSGoogle Scholar
  32. Nindos, A., Zhang, J., Zhang, H.: 2003, The magnetic helicity budget of solar active regions and coronal mass ejections. Astrophys. J. 594, 1033.  DOI.CrossRefADSGoogle Scholar
  33. Otsuji, K., Kitai, R., Ichimoto, K., Shibata, K.: 2011, Statistical study on the nature of solar-flux emergence. Publ. Astron. Soc. Japan 63, 1047. ADS.ADSGoogle Scholar
  34. Pariat, E., Aulanier, G., Schmieder, B., Georgoulis, M.K., Rust, D.M., Bernasconi, P.N.: 2004, Resistive emergence of undulatory flux tubes. Astrophys. J. 614, 1099.  DOI.CrossRefADSGoogle Scholar
  35. Poisson, M., López Fuentes, M., Mandrini, C.H., Démoulin, P.: 2012, Magnetic tongues properties in solar active regions. Bol. Asoc. Argent. Astron. 55, 147. ADS.ADSGoogle Scholar
  36. Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., et al.: 1995, The solar oscillations investigation – Michelson Doppler imager. Solar Phys. 162, 129.  DOI.CrossRefADSGoogle Scholar
  37. Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A., Tomczyk, S.: 2012, Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 229.  DOI.CrossRefADSGoogle Scholar
  38. Strous, L.H., Scharmer, G., Tarbell, T.D., Title, A.M., Zwaan, C.: 1996, Phenomena in an emerging active region. I. Horizontal dynamics. Astron. Astrophys. 306, 947. ADS.ADSGoogle Scholar
  39. Tian, L., Alexander, D.: 2008, On the origin of magnetic helicity in the solar corona. Astrophys. J. 673, 532.  DOI.CrossRefADSGoogle Scholar
  40. Toriumi, S., Hayashi, K., Yokoyama, T.: 2012, Detection of the horizontal divergent flow prior to the solar flux emergence. Astrophys. J. 751, 154. ADS.  DOI.CrossRefADSGoogle Scholar
  41. Valori, G., Green, L.M., Démoulin, P., Vargas Domínguez, S., van Driel-Gesztelyi, L., Wallace, A., Baker, D., Fuhrmann, M.: 2012, Nonlinear force-free extrapolation of emerging flux with a global twist and serpentine fine structures. Solar Phys. 278, 73. ADS.  DOI.CrossRefADSGoogle Scholar
  42. van Driel-Gesztelyi, L., Green, L.M.: 2014, Evolution of active regions. Living Rev. Solar Phys. In press.Google Scholar
  43. van Driel-Gesztelyi, L., Petrovay, K.: 1990, Asymmetric flux loops in active regions. Solar Phys. 126, 285.  DOI.CrossRefADSGoogle Scholar
  44. Vargas Domínguez, S., van Driel-Gesztelyi, L., Bellot Rubio, L.R.: 2012, Granular-scale elementary flux emergence episodes in a solar active region. Solar Phys. 278, 99. ADS.  DOI.CrossRefADSGoogle Scholar
  45. Yang, S., Zhang, H., Büchner, J.: 2009, Magnetic helicity accumulation and tilt angle evolution of newly emerging active regions. Astron. Astrophys. 502, 333.  DOI.CrossRefADSzbMATHGoogle Scholar
  46. Zhang, H.: 2001, Formation of current helicity and emerging magnetic flux in solar active regions. Mon. Not. Roy. Astron. Soc. 326, 57.  DOI.CrossRefADSGoogle Scholar
  47. Zhang, H., Moss, D., Kleeorin, N., Kuzanyan, K., Rogachevskii, I., Sokoloff, D., Gao, Y., Xu, H.: 2012, Current helicity of active regions as a tracer of large-scale solar magnetic helicity. Astrophys. J. 751, 47.  DOI.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • M. Poisson
    • 1
    Email author
  • C. H. Mandrini
    • 1
    • 2
  • P. Démoulin
    • 3
  • M. López Fuentes
    • 1
    • 2
  1. 1.Instituto de Astronomía y Física del Espacio (IAFE)CONICET-UBABuenos AiresArgentina
  2. 2.Facultad de Ciencias Exactas y Naturales (FCEN)UBABuenos AiresArgentina
  3. 3.Observatoire de ParisLESIA, UMR 8109 (CNRS)Meudon Principal CedexFrance

Personalised recommendations