Solar Physics

, Volume 290, Issue 3, pp 819–839 | Cite as

Statistical Evidence for Contributions of Flares and Coronal Mass Ejections to Major Solar Energetic Particle Events

  • G. Trottet
  • S. Samwel
  • K.-L. KleinEmail author
  • T. Dudok de Wit
  • R. Miteva


Solar energetic particle (SEP) events are related to flares and coronal mass ejections (CMEs). This work is a new investigation of statistical relationships between SEP peak intensities – deka-MeV protons and near-relativistic electrons – and characteristic quantities of the associated solar activity. We consider the speed of the CME and quantities describing the flare-related energy release: peak flux and fluence of soft X-ray (SXR) emission and the fluence of microwave emission. The sample comprises 38 SEP events associated with strong SXR bursts (classes M and X) in the western solar hemisphere between 1997 and 2006, in which the flare-related particle acceleration was accompanied by radio bursts indicating electron escape into the interplanetary space. The main distinction of the present statistical analysis from earlier work is that in addition to the classical Pearson correlation coefficient, the partial correlation coefficients are calculated to remove the correlation effects between the solar parameters themselves. The classical correlation analysis shows the usual picture of correlations with broad scatter between SEP peak intensities and the different parameters of solar activity and strong correlations between the solar activity parameters themselves. The partial correlation analysis shows that the only parameters that significantly affect the SEP intensity are the CME speed and the SXR fluence. The SXR peak flux and the microwave fluence make no additional contribution. We conclude that these findings bring statistical evidence that both flare acceleration and CME shock acceleration contribute to the deka-MeV proton and near-relativistic electron populations in large SEP events.


Coronal mass ejections Energetic particles, acceleration Energetic particles, propagation Flares, energetic particles 



The authors acknowledge D. Boscher (ONERA Toulouse) for making the IPODE database of GOES particle measurements available to us. We acknowledge the generous supply of data from the ACE/EPAM particle instrument, the GOES particle and soft X-ray detectors, the Wind/WAVES radio spectrograph, the RSTN and NoRP radio instruments, and the Radio Monitoring web site at Paris Observatory. Extensive use was made of the CME catalogue generated and maintained at the CDAW Data Center by NASA and The Catholic University of America in cooperation with the Naval Research Laboratory. SOHO is a project of international cooperation between ESA and NASA. The work presented here benefitted from partial financial support and from scientific cooperation within the SEPServer (Grant Agreement No. 262773) and HESPE (Grant Agreement No. 263086) projects of the 7th Framework programme of the European Union. This research was carried out within a collaboration between Egypt and France funded through the IMHOTEP programme (contracts 23190YB and 27471UK). We are grateful to the Egyptian coordinator, M. Shaltout, for his support. We also acknowledge support by the Centre National d’Etudes Spatiales (CNES). The referee is thanked for the careful reading of the manuscript and helpful comments.


  1. Balch, C.C.: 2008, Updated verification of the Space Weather Prediction Center’s solar energetic particle prediction model. Space Weather 6, S01001.  DOI. CrossRefADSGoogle Scholar
  2. Bein, B.M., Berkebile-Stoiser, S., Veronig, A.M., Temmer, M., Vršnak, B.: 2012, Impulsive acceleration of coronal mass ejections. II. Relation to soft X-ray flares and filament eruptions. Astrophys. J. 755, 44.  DOI. CrossRefADSGoogle Scholar
  3. Bougeret, J.-L., Kaiser, M.L., Kellogg, P.J., Manning, R., Goetz, K., Monson, S.J., Monge, N., Friel, L., Meetre, C.A., Perche, C., Sitruk, L., Hoang, S.: 1995, Waves: The Radio and Plasma Wave Investigation on the Wind spacecraft. Space Sci. Rev. 71, 231.  DOI. CrossRefADSGoogle Scholar
  4. Bougeret, J.-L., Zarka, P., Caroubalos, C., Karlický, M., Leblanc, Y., Maroulis, D., Hillaris, A., Moussas, X., Alissandrakis, C.E., Dumas, G., Perche, C.: 1998, A shock-associated (SA) radio event and related phenomena observed from the base of the solar corona to 1 AU. Geophys. Res. Lett. 25, 2513.  DOI. CrossRefADSGoogle Scholar
  5. Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llébaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357.  DOI. CrossRefADSGoogle Scholar
  6. Cane, H.V., Erickson, W.C., Prestage, N.P.: 2002, Solar flares, type III radio bursts, coronal mass ejections and energetic particles. J. Geophys. Res. 107, 1315.  DOI. CrossRefGoogle Scholar
  7. Cane, H.V., Lario, D.: 2006, An introduction to CMEs and energetic particles. Space Sci. Rev. 123, 45.  DOI. CrossRefADSGoogle Scholar
  8. Cane, H.V., Richardson, I.G., von Rosenvinge, T.T.: 2010, A study of solar energetic particle events of 1997 – 2006: their composition and associations. J. Geophys. Res. 115, 8101.  DOI. CrossRefGoogle Scholar
  9. Chertok, I.M.: 1990, On the correlation between the solar gamma-ray line emission, radio bursts and proton fluxes in the interplanetary space. Astron. Nachr. 311, 379. CrossRefADSGoogle Scholar
  10. Cliver, E.W., Forrest, D.J., Cane, H.V., Reames, D.V., McGuire, R.E., von Rosenvinge, T.T., Kane, S.R., MacDowall, R.J.: 1989, Solar flare nuclear gamma-rays and interplanetary proton events. Astrophys. J. 343, 953.  DOI. CrossRefADSGoogle Scholar
  11. Cliver, E.W., Ling, A.G., Belov, A., Yashiro, S.: 2012, Size distributions of solar flares and solar energetic particle events. Astrophys. J. Lett. 756, L29.  DOI. CrossRefADSGoogle Scholar
  12. Cliver, E.W., Dietrich, W.F.: 2013, The 1859 space weather event revisited: limits of extreme activity. Space Weather Space Clim. 3, A31.  DOI. CrossRefADSGoogle Scholar
  13. Daibog, E.I., Kurt, V.G., Logachev, Y.I., Stolpovsky, V.G.: 1987, Solar cosmic ray events with low and high p-ratios: Comparison with X-ray and radio emission data. Proc. 20th Int. Cosmic Ray Conf. 3, 45. Google Scholar
  14. Daibog, E.I., Stolpovskii, V.G., Melnikov, V.F., Podstrigach, T.S.: 1989, Microwave bursts and the relative abundance of electrons and protons in cosmic-rays from solar flares. Sov. Astron. Lett. 15, 432. ADSGoogle Scholar
  15. Dennis, B.R., Zarro, D.M.: 1993, The Neupert effect – what can it tell us about the impulsive and gradual phases of solar flares? Solar Phys. 146, 177.  DOI. CrossRefADSGoogle Scholar
  16. Dierckxsens, M., Tziotziou, K., Dalla, S., Patsou, I., Marsh, M.S., Crosby, N.B., Malandraki, O.E., Lygeros, N.: 2014, Relationship between solar energetic particles and properties of flares and CMEs: Statistical analysis of solar cycle 23 events. Solar Phys. in press Google Scholar
  17. Ding, L., Jiang, Y., Zhao, L., Li, G.: 2013, The “Twin-CME” scenario and large solar energetic particle events in solar cycle 23. Astrophys. J. 763, 30.  DOI. CrossRefADSGoogle Scholar
  18. Dresing, N., Gómez-Herrero, R., Heber, B., Klassen, A., Malandraki, O., Dröge, W., Kartavykh, Y.: 2014, Statistical survey of widely spread out solar electron events observed with STEREO and ACE with special attention to anisotropies. Astron. Astrophys. 567, A27.  DOI. CrossRefADSGoogle Scholar
  19. Garcia, H.A.: 2004, Forecasting methods for occurrence and magnitude of proton storms with solar soft X-rays. Space Weather 2, S02002.  DOI. ADSGoogle Scholar
  20. Gold, R.E., Krimigis, S.M., Hawkins, S.E., Haggerty, D.K., Lohr, D.A., Fiore, E., Armstrong, T.P., Holland, G., Lanzerotti, L.J.: 1998, Electron, proton, and alpha monitor on the advanced composition explorer spacecraft. Space Sci. Rev. 86, 541.  DOI. CrossRefADSGoogle Scholar
  21. Golub, G.H., van Loan, C.F.: 2013, Matrix Computations, 4th edn., Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, Chap. 6.3. zbMATHGoogle Scholar
  22. Gopalswamy, N., Yashiro, S., Lara, A., Kaiser, M.L., Thompson, B.J., Gallagher, P.T., Howard, R.A.: 2003, Large solar energetic particle events of cycle 23: a global view. Geophys. Res. Lett. 30, 8015.  DOI. CrossRefADSGoogle Scholar
  23. Gopalswamy, N., Yashiro, S., Krucker, S., Stenborg, G., Howard, R.A.: 2004, Intensity variation of large solar energetic particle events associated with coronal mass ejections. J. Geophys. Res. 109, A12105.  DOI. CrossRefADSGoogle Scholar
  24. Kahler, S.W.: 1982, The role of the big flare syndrome in correlations of solar energetic proton fluxes and associated microwave burst parameters. J. Geophys. Res. 87, 3439.  DOI. CrossRefADSGoogle Scholar
  25. Kahler, S.W.: 2001, The correlation between solar energetic particle peak intensities and speeds of coronal mass ejections: Effects of ambient particle intensities and energy spectra. J. Geophys. Res. 106, 20947.  DOI. CrossRefADSGoogle Scholar
  26. Kahler, S.W., Cliver, E.W., Ling, A.G.: 2007, Validating the proton prediction system (PPS). J. Atmos. Solar-Terr. Phys. 69, 43.  DOI. CrossRefADSGoogle Scholar
  27. Kahler, S.W., Vourlidas, A.: 2014, Do interacting coronal mass ejections play a role in solar energetic particle events? Astrophys. J. 784, 47.  DOI. CrossRefADSGoogle Scholar
  28. Kallenrode, M.: 1993, Neutral lines and azimuthal ‘transport’ of solar energetic particles. J. Geophys. Res. 98, 5573.  DOI. CrossRefADSGoogle Scholar
  29. Kallenrode, M.-B.: 2003, Current views on impulsive and gradual solar energetic particle events. J. Phys. G 29, 965.  DOI. CrossRefADSGoogle Scholar
  30. Klein, K.-L.: 2006, Radio bursts and solar energetic particle events. In: Gopalswamy, N., Mewaldt, R., Torsti, J. (eds.) Solar Eruptions and Energetic Particles, AGU Geophys. Monogr. 165, 233. CrossRefGoogle Scholar
  31. Klein, K.-L., Trottet, G.: 2001, The origin of solar energetic particle events: Coronal acceleration versus shock wave acceleration. Space Sci. Rev. 95, 215.  DOI. CrossRefADSGoogle Scholar
  32. Klein, K.-L., Trottet, G., Klassen, A.: 2010, Energetic particle acceleration and propagation in strong CME-less flares. Solar Phys. 263, 185.  DOI. CrossRefADSGoogle Scholar
  33. Klein, K.-L., Trottet, G., Samwel, S., Malandraki, O.: 2011, Particle acceleration and propagation in strong flares without major solar energetic particle events. Solar Phys. 269, 309.  DOI. CrossRefADSGoogle Scholar
  34. Krucker, S., Benz, A.O.: 2000, Are heating events in the quiet solar corona small flares? Multiwavelength observations of individual events. Solar Phys. 191, 341.  DOI. CrossRefADSGoogle Scholar
  35. Krucker, S., Kontar, E.P., Christe, S., Lin, R.P.: 2007, Solar flare electron spectra at the Sun and near the Earth. Astrophys. J. Lett. 663, L109.  DOI. CrossRefADSGoogle Scholar
  36. Lario, D., Aran, A., Gómez-Herrero, R., Dresing, N., Heber, B., Ho, G.C., Decker, R.B., Roelof, E.C.: 2013, Longitudinal and radial dependence of solar energetic particle peak intensities: STEREO, ACE, SOHO, GOES, and MESSENGER observations. Astrophys. J. 767, 41.  DOI. CrossRefADSGoogle Scholar
  37. Malandraki, O.E., Agueda, N., Papaioannou, A., Klein, K.-L., Valtonen, E., Heber, B., Dröge, W., Aurass, H., Nindos, A., Vilmer, N., Sanahuja, B., Kouloumvakos, A., Braune, S., Preka-Papadema, P., Tziotziou, K., Hamadache, C., Kiener, J., Tatischeff, V., Riihonen, E., Kartavykh, Y., Rodríguez-Gasén, R., Vainio, R.: 2012, Scientific analysis within SEPServer – new perspectives in solar energetic particle research: The case study of the 13 July 2005 event. Solar Phys. 281, 333.  DOI. ADSGoogle Scholar
  38. Mann, G., Klassen, A., Aurass, H., Classen, H.-T.: 2003, Formation and development of shock waves in the solar corona and the near-Sun interplanetary space. Astron. Astrophys. 400, 329.  DOI. CrossRefADSGoogle Scholar
  39. Masson, S., Aulanier, G., Pariat, E., Klein, K.-L.: 2012, Interchange slip-running reconnection and sweeping SEP beams. Solar Phys. 276, 199.  DOI. CrossRefADSGoogle Scholar
  40. Miteva, R., Klein, K.-L., Malandraki, O., Dorrian, G.: 2013, Solar energetic particle events in the 23rd solar cycle: interplanetary magnetic field configuration and statistical relationship with flares and CMEs. Solar Phys. 282, 579.  DOI. CrossRefADSGoogle Scholar
  41. Murphy, R.J., Share, G.H., Grove, J.E., Johnson, W.N., Kinzer, R.L., Kroeger, R.A., Kurfess, J.D., Strickman, M.S., Matz, S.M., Grabelsky, D.A., Purcell, W.R., Ulmer, M.P., Cameron, R.A., Jung, G.V., Jensen, C.M., Vestrand, W.T., Forrest, D.J.: 1993, OSSE observations of solar flares In: Friedlander, M., Gehrels, N., Macomb, D.J. (eds.) Compton Gamma-Ray Observatory, AIP Conf. Ser. 280, 619.  DOI. Google Scholar
  42. Nakajima, H., Sekiguchi, H., Sawa, M., Kai, K., Kawashima, S.: 1985, The radiometer and polarimeters at 80, 35, and 17 GHz for solar observations at Nobeyama. Publ. Astron. Soc. Japan 37, 163. ADSGoogle Scholar
  43. Neupert, W.M.: 1968, Comparison of solar X-ray line emission with microwave emission during flares. Astrophys. J. 153, L59.  DOI. CrossRefADSGoogle Scholar
  44. Nindos, A., Aurass, H., Klein, K.-L., Trottet, G.: 2008, Radio emission of flares and coronal mass ejections. Solar Phys. 253, 3.  DOI. CrossRefADSGoogle Scholar
  45. Núñez, M.: 2011, Predicting solar energetic proton events (E>10 MeV). Space Weather 9, 7003.  DOI. CrossRefGoogle Scholar
  46. Ohki, K.: 2003, Origin of large solar proton events. Solar Phys. 213, 111.  DOI. CrossRefADSGoogle Scholar
  47. Pérez Enriquez, R., Miroshnichenko, L.I.: 1999, Frequency distributions of solar gamma ray events related and not related with SPEs in 1980 – 1995. Solar Phys. 188, 169.  DOI. CrossRefADSGoogle Scholar
  48. Posner, A.: 2007, Up to 1-hour forecasting of radiation hazards from solar energetic ion events with relativistic electrons. Space Weather 5, 5001.  DOI. CrossRefADSGoogle Scholar
  49. Ramaty, R., Mandzhavidze, N., Kozlovsky, B., Skibo, J.G.: 1993, Acceleration in solar flares: Interacting particles versus interplanetary particles. Adv. Space Res. 13(9), 275.  DOI. CrossRefADSGoogle Scholar
  50. Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996 – 2009): Catalog and summary of properties. Solar Phys. 264, 189.  DOI. CrossRefADSGoogle Scholar
  51. Richardson, I.G., von Rosenvinge, T.T., Cane, H.V., Christian, E.R., Cohen, C.M.S., Labrador, A.W., Leske, R.A., Mewaldt, R.A., Wiedenbeck, M.E., Stone, E.C.: 2014, > 25 MeV proton events observed by the High Energy Telescopes on the STEREO A and B spacecraft and/or at Earth during the first seven years of the STEREO mission. Solar Phys.  DOI. Google Scholar
  52. Shih, A.Y., Lin, R.P., Smith, D.M.: 2009, RHESSI observations of the proportional acceleration of relativistic > 0.3 MeV electrons and > 30 MeV protons in solar flares. Astrophys. J. Lett. 698, L152.  DOI. CrossRefADSGoogle Scholar
  53. Vestrand, W.T.: 1988, High-energy continuum emission from solar flares. Solar Phys. 118, 95.  DOI. CrossRefADSGoogle Scholar
  54. Vršnak, B., Sudar, D., Ruždjak, D.: 2005, The CME-flare relationship: are there really two types of CMEs? Astron. Astrophys. 435, 1149.  DOI. CrossRefADSGoogle Scholar
  55. Wall, J.V., Jenkins, C.R.: 2012, Practical Statistics for Astronomers, Cambridge University Press, Cambridge and New York, Chap. 6.6. CrossRefGoogle Scholar
  56. Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.C., Plunkett, S.P., Rich, N.B., Howard, R.A.: 2004, A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res. 109, A07105.  DOI. ADSGoogle Scholar
  57. Zhang, J., Dere, K.P., Howard, R.A., Vourlidas, A.: 2004, A study of the kinematic evolution of coronal mass ejections. Astrophys. J. 604, 420.  DOI. CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • G. Trottet
    • 1
  • S. Samwel
    • 2
  • K.-L. Klein
    • 1
    Email author
  • T. Dudok de Wit
    • 3
  • R. Miteva
    • 1
    • 4
  1. 1.Observatoire de Paris, LESIA-CNRS UMR 8109Univ. P & M Curie and Paris-Diderot, Observatoire de MeudonMeudonFrance
  2. 2.National Research Institute of Astronomy and Geophysics (NRIAG)HelwanEgypt
  3. 3.Laboratoire de Physique et Chimie de l’Environnement et de l’EspaceOrléans cedex 2France
  4. 4.Space Research and Technology InstituteBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations