Advertisement

Solar Physics

, Volume 290, Issue 2, pp 579–612 | Cite as

Geoeffectiveness of Coronal Mass Ejections in the SOHO Era

  • M. Dumbović
  • A. Devos
  • B. Vršnak
  • D. Sudar
  • L. Rodriguez
  • D. Ruždjak
  • K. Leer
  • S. Vennerstrøm
  • A. Veronig
Article

Abstract

The main objective of the study is to determine the probability distributions of the geomagnetic Dst index as a function of the coronal mass ejection (CME) and solar flare parameters for the purpose of establishing a probabilistic forecast tool for the intensity of geomagnetic storms. We examined several CME and flare parameters as well as the effect of successive CME occurrence in changing the probability for a certain range of Dst index values. The results confirm some previously known relationships between remotely observed properties of solar eruptive events and geomagnetic storms: the importance of the initial CME speed, apparent width, source position, and the class of the associated solar flare. We quantify these relationships in a form that can be used for future space-weather forecasting. The results of the statistical study are employed to construct an empirical statistical model for predicting the probability of the geomagnetic storm intensity based on remote solar observations of CMEs and flares.

Keywords

Coronal mass ejections Solar flares Geomagnetic storms 

Notes

Acknowledgements

This work has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 263252 [COMESEP]. This work has been supported in part by Croatian Science Foundation under the project 6212 “Solar and Stellar Variability”. This research has been funded by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office (IAP P7/08 CHARM). L. Rodriguez acknowledges support from the Belgian Federal Science Policy Office through the ESA – PRODEX program. We are grateful to the SOHO LASCO CME catalog team for providing the CME data. This CME catalog is generated and maintained at the CDAW Data Center by NASA and The Catholic University of America in cooperation with the Naval Research Laboratory. SOHO is a project of international cooperation between ESA and NASA. We are also grateful to the Solar-Terrestrial Physics (STP) Division of NOAA’s (National Oceanic and Atmospheric Administration) National Geophysical Data Center (NGDC) for providing solar flare data.

References

  1. Akasofu, S.-I.: 1981, Energy coupling between the solar wind and the magnetosphere. Space Sci. Rev. 28, 121.  DOI. ADSCrossRefGoogle Scholar
  2. Cargill, P.J.: 2004, On the aerodynamic drag force acting on interplanetary coronal mass ejections. Solar Phys. 221, 135.  DOI. ADSCrossRefGoogle Scholar
  3. Cid, C., Cremades, H., Aran, A., Mandrini, C., Sanahuja, B., Schmieder, B., Menvielle, M., Rodriguez, L., Saiz, E., Cerrato, Y., Dasso, S., Jacobs, C., Lathuillere, C., Zhukov, A.: 2012, Can a halo CME from the limb be geoeffective? J. Geophys. Res. 117, 11102.  DOI. CrossRefGoogle Scholar
  4. Dungey, J.W.: 1961, Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6, 47.  DOI. ADSCrossRefGoogle Scholar
  5. Farrugia, C., Berdichevsky, D.: 2004, Evolutionary signatures in complex ejecta and their driven shocks. Ann. Geophys. 22, 3679.  DOI. ADSCrossRefGoogle Scholar
  6. Gopalswamy, N., Yashiro, S., Akiyama, S.: 2007, Geoeffectiveness of halo coronal mass ejections. J. Geophys. Res. 112, 6112.  DOI. CrossRefGoogle Scholar
  7. Gopalswamy, N., Makela, P., Yashiro, S., Davila, J.M.: 2012, The relationship between the expansion speed and radial speed of CMEs confirmed using quadrature observations of the 2011 February 15 CME. Sun Geosph. 7, 7. ADSGoogle Scholar
  8. Gosling, J.T., Bame, S.J., McComas, D.J., Phillips, J.L.: 1990, Coronal mass ejections and large geomagnetic storms. Geophys. Res. Lett. 17, 901.  DOI. ADSCrossRefGoogle Scholar
  9. Huttunen, K.E.J., Schwenn, R., Bothmer, V., Koskinen, H.E.J.: 2005, Properties and geoeffectiveness of magnetic clouds in the rising, maximum and early declining phases of solar cycle 23. Ann. Geophys. 23, 625.  DOI. ADSCrossRefGoogle Scholar
  10. Kim, R.-S., Cho, K.-S., Moon, Y.-J., Dryer, M., Lee, J., Yi, Y., Kim, K.-H., Wang, H., Park, Y.-D., Kim, Y.H.: 2010, An empirical model for prediction of geomagnetic storms using initially observed CME parameters at the Sun. J. Geophys. Res. 115, 12108.  DOI. CrossRefGoogle Scholar
  11. Koskinen, H.E.J., Huttunen, K.E.J.: 2006, Geoeffectivity of coronal mass ejections. Space Sci. Rev. 124, 169.  DOI. ADSCrossRefGoogle Scholar
  12. Lepping, R.P., Acũna, M.H., Burlaga, L.F., Farrell, W.M., Slavin, J.A., Schatten, K.H., Mariani, F., Ness, N.F., Neubauer, F.M., Whang, Y.C., Byrnes, J.B., Kennon, R.S., Panetta, P.V., Scheifele, J., Worley, E.M.: 1995, The wind magnetic field investigation. Space Sci. Rev. 71, 207.  DOI. ADSCrossRefGoogle Scholar
  13. Maričić, D., Vršnak, B., Stanger, A.L., Veronig, A.M., Temmer, M., Roša, D.: 2007, Acceleration phase of coronal mass ejections: II. Synchronization of the energy release in the associated flare. Solar Phys. 241, 99.  DOI. ADSCrossRefGoogle Scholar
  14. McComas, D.J., Bame, S.J., Barker, P., Feldman, W.C., Phillips, J.L., Riley, P., Griffee, J.W.: 1998, Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the advanced composition explorer. Space Sci. Rev. 86, 563.  DOI. ADSCrossRefGoogle Scholar
  15. Mishra, W., Srivastava, N., Chakrabarty, D.: 2014, Evolution and consequences of interacting CMEs of 2012 November 9 – 10 using STEREO/SECCHI and in situ observations. Solar Phys., in press. arXiv. ADS.
  16. Moon, Y.-J., Choe, G.S., Wang, H., Park, Y.D., Gopalswamy, N., Yang, G., Yashiro, S.: 2002, A statistical study of two classes of coronal mass ejections. Astrophys. J. 581, 694.  DOI. ADSCrossRefGoogle Scholar
  17. Moon, Y.-J., Choe, G.S., Wang, H., Park, Y.D., Cheng, C.Z.: 2003, Relationship between CME kinematics and flare strength. J. Korean Astron. Soc. 36, 61. ADSCrossRefGoogle Scholar
  18. Möstl, C., Davies, J.A.: 2013, Speeds and arrival times of solar transients approximated by self-similar expanding circular fronts. Solar Phys. 285, 411.  DOI. ADSCrossRefGoogle Scholar
  19. Möstl, C., Farrugia, C.J., Kilpua, E.K.J., Jian, L.K., Liu, Y., Eastwood, J.P., Harrison, R.A., Webb, D.F., Temmer, M., Odstrcil, D., Davies, J.A., Rollett, T., Luhmann, J.G., Nitta, N., Mulligan, T., Jensen, E.A., Forsyth, R., Lavraud, B., de Koning, C.A., Veronig, A.M., Galvin, A.B., Zhang, T.L., Anderson, B.J.: 2012, Multi-point shock and flux rope analysis of multiple interplanetary coronal mass ejections around 2010 August 1 in the inner heliosphere. Astrophys. J. 758, 10.  DOI. ADSCrossRefGoogle Scholar
  20. Ogilvie, K.W., Chornay, D.J., Fritzenreiter, R.J., Hunsaker, F., Keller, J., Lobell, J., Miller, G., Scudder, J.D., Sittler, E.C. Jr., Torbert, R.B., Bodet, D., Needell, G., Lazarus, A.J., Steinberg, J.T., Tappan, J.H., Mavretic, A., Gergin, E.: 1995, SWE, a comprehensive plasma instrument for the wind spacecraft. Space Sci. Rev. 71, 55.  DOI. ADSCrossRefGoogle Scholar
  21. Pitman, J.: 1993, Probability, Springer, New York. CrossRefzbMATHGoogle Scholar
  22. Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996 – 2009): Catalog and summary of properties. Solar Phys. 264, 189.  DOI. ADSCrossRefGoogle Scholar
  23. Richardson, I.G., Cane, H.V.: 2011, Geoeffectiveness (Dst and Kp) of interplanetary coronal mass ejections during 1995 – 2009 and implications for storm forecasting. Space Weather 9, 7005.  DOI. ADSCrossRefGoogle Scholar
  24. Richardson, I.G., Webb, D.F., Zhang, J., Berdichevsky, D.B., Biesecker, D.A., Kasper, J.C., Kataoka, R., Steinberg, J.T., Thompson, B.J., Wu, C.-C., Zhukov, A.N.: 2006, Major geomagnetic storms (Dst≤−100 nT) generated by corotating interaction regions. J. Geophys. Res. 111, 7.  DOI. Google Scholar
  25. Rodriguez, L., Zhukov, A.N., Cid, C., Cerrato, Y., Saiz, E., Cremades, H., Dasso, S., Menvielle, M., Aran, A., Mandrini, C., Poedts, S., Schmieder, B.: 2009, Three frontside full halo coronal mass ejections with a nontypical geomagnetic response. Space Weather 7, 6003.  DOI. ADSCrossRefGoogle Scholar
  26. Russell, C.T., McPherron, R.L., Burton, R.K.: 1974, On the cause of geomagnetic storms. J. Geophys. Res. 79, 1105.  DOI. ADSCrossRefGoogle Scholar
  27. Schwenn, R., dal Lago, A., Huttunen, E., Gonzalez, W.D.: 2005, The association of coronal mass ejections with their effects near the Earth. Astrophys. J. 23, 1033. Google Scholar
  28. Smith, C.W., L’Heureux, J., Ness, N.F., Acuña, M.H., Burlaga, L.F., Scheifele, J.: 1998, The ACE magnetic fields experiment. Space Sci. Rev. 86, 613.  DOI. ADSCrossRefGoogle Scholar
  29. Srivastava, N.: 2005, A logistic regression model for predicting the occurrence of intense geomagnetic storms. Ann. Geophys. 23(9), 2969.  DOI. ADSCrossRefGoogle Scholar
  30. Srivastava, N.: 2006, The challenge of predicting the occurrence of intense storms. J. Astrophys. Astron. 27, 237.  DOI. ADSCrossRefGoogle Scholar
  31. Srivastava, N., Venkatakrishnan, P.: 2004, Solar and interplanetary sources of major geomagnetic storms during 1996 – 2002. J. Geophys. Res. 109, 10103.  DOI. CrossRefGoogle Scholar
  32. Stirzaker, D.: 2003, Elementary Probability, Cambridge University Press, New York. CrossRefzbMATHGoogle Scholar
  33. Stone, E.C., Frandsen, A.M., Mewaldt, R.A., Christian, E.R., Margolies, D., Ormes, J.F., Snow, F.: 1998, The advanced composition explorer. Space Sci. Rev. 86, 1.  DOI. ADSCrossRefGoogle Scholar
  34. Uwamahoro, J., McKinnell, L.A., Habarulema, J.B.: 2012, Estimating the geoeffectiveness of halo CMEs from associated solar and IP parameters using neural networks. Ann. Geophys. 30, 963.  DOI. ADSCrossRefGoogle Scholar
  35. Valach, F., Revallo, M., Bochníček, J., Hejda, P.: 2009, Solar energetic particle flux enhancement as a predictor of geomagnetic activity in a neural network-based model. Space Weather 7, 4004.  DOI. ADSCrossRefGoogle Scholar
  36. Verbanac, G., Mandea, M., Vršnak, B., Sentic, S.: 2011, Evolution of solar and geomagnetic activity indices, and their relationship: 1960 – 2001. Solar Phys. 271, 183.  DOI. ADSCrossRefGoogle Scholar
  37. Verbanac, G., Živković, S., Vršnak, B., Bandić, M., Hojsak, T.: 2013, Comparison of geoeffectiveness of coronal mass ejections and corotating interaction regions. Astron. Astrophys. 558, A85.  DOI. ADSCrossRefGoogle Scholar
  38. Vršnak, B., Sudar, D., Ruždjak, D.: 2005, The CME-flare relationship: Are there really two types of CMEs? Astron. Astrophys. 435, 1149.  DOI. ADSCrossRefGoogle Scholar
  39. Vršnak, B., Ruždjak, D., Sudar, D., Gopalswamy, N.: 2004, Kinematics of coronal mass ejections between 2 and 30 solar radii. What can be learned about forces governing the eruption? Astron. Astrophys. 423, 717.  DOI. ADSCrossRefGoogle Scholar
  40. Vršnak, B., Žic, T., Vrbanec, D., Temmer, M., Rollett, T., Möstl, C., Veronig, A., Čalogović, J., Dumbović, M., Lulić, S., Moon, Y.-J., Shanmugaraju, A.: 2013, Propagation of interplanetary coronal mass ejections: The drag-based model. Solar Phys. 285, 295.  DOI. ADSCrossRefGoogle Scholar
  41. Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.C., Plunkett, S.P., Rich, N.B., Howard, R.A.: 2004, A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res. 109, 7105.  DOI. CrossRefGoogle Scholar
  42. Yermolaev, Y.I., Nikolaeva, N.S., Lodkina, I.G., Yermolaev, M.Y.: 2012, Geoeffectiveness and efficiency of CIR, sheath, and ICME in generation of magnetic storms. J. Geophys. Res. 117.  DOI.
  43. Zhang, J., Dere, K.P., Howard, R.A., Bothmer, V.: 2003, Identification of solar sources of major geomagnetic storms between 1996 and 2000. Astrophys. J. 582, 520.  DOI. ADSCrossRefGoogle Scholar
  44. Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J.C., Nitta, N.V., Poomvises, W., Thompson, B.J., Wu, C.-C., Yashiro, S., Zhukov, A.N.: 2007, Solar and interplanetary sources of major geomagnetic storms (Dst≤−100 nT) during 1996 – 2005. J. Geophys. Res. 112, 10102.  DOI. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • M. Dumbović
    • 1
  • A. Devos
    • 2
  • B. Vršnak
    • 1
  • D. Sudar
    • 1
  • L. Rodriguez
    • 2
  • D. Ruždjak
    • 1
  • K. Leer
    • 3
  • S. Vennerstrøm
    • 3
  • A. Veronig
    • 4
  1. 1.Hvar Observatory, Faculty of GeodesyUniversity of ZagrebZagrebCroatia
  2. 2.Royal Observatory of BelgiumBrusselsBelgium
  3. 3.Technical University of DenmarkCopenhagenDenmark
  4. 4.IGAM/Institute of PhysicsUniversity of GrazGrazAustria

Personalised recommendations