Advertisement

Solar Physics

, Volume 289, Issue 12, pp 4589–4606 | Cite as

The Relation Between Large-Scale Coronal Propagating Fronts and Type II Radio Bursts

  • Nariaki V. NittaEmail author
  • Wei Liu
  • Nat Gopalswamy
  • Seiji Yashiro
Article

Abstract

Large-scale, wave-like disturbances in extreme-ultraviolet (EUV) and type II radio bursts are often associated with coronal mass ejections (CMEs). Both phenomena may signify shock waves driven by CMEs. Taking EUV full-disk images at an unprecedented cadence, the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory has observed the so-called EIT waves or large-scale coronal propagating fronts (LCPFs) from their early evolution, which coincides with the period when most metric type II bursts occur. This article discusses the relation of LCPFs as captured by AIA with metric type II bursts. We show examples of type II bursts without a clear LCPF and fast LCPFs without a type II burst. Part of the disconnect between the two phenomena may be due to the difficulty in identifying them objectively. Furthermore, it is possible that the individual LCPFs and type II bursts may reflect different physical processes and external factors. In particular, the type II bursts that start at low frequencies and high altitudes tend to accompany an extended arc-shaped feature, which probably represents the 3D structure of the CME and the shock wave around it, and not just its near-surface track, which has usually been identified with EIT waves. This feature expands and propagates toward and beyond the limb. These events may be characterized by stretching of field lines in the radial direction and may be distinct from other LCPFs, which may be explained in terms of sudden lateral expansion of the coronal volume. Neither LCPFs nor type II bursts by themselves serve as necessary conditions for coronal shock waves, but these phenomena may provide useful information on the early evolution of the shock waves in 3D when both are clearly identified in eruptive events.

Keywords

Shock waves Coronal mass ejections Solar Dynamics Observatory Extreme Ultraviolet emission Radio emission 

Notes

Acknowledgements

This work has been supported by the NSF grant AGS-1259549, NASA AIA contract NNG04EA00C and the NASA STEREO mission under NRL Contract No. N00173-02-C-2035. NASA grant NNX11AO68G supported the work of WL. The work of NG and SY was supported by the NASA LWS TR&T program.

References

  1. Bein, B.M., Berkebile-Stoiser, S., Veronig, A.M., Temmer, M., Muhr, N., Kienreich, I., Utz, D., Vršnak, B.: 2011, Impulsive acceleration of coronal mass ejections. I. Statistics and coronal mass ejection source region characteristics. Astrophys. J. 738, 191.  DOI. ADS. ADSCrossRefGoogle Scholar
  2. Biesecker, D.A., Myers, D.C., Thompson, B.J., Hammer, D.M., Vourlidas, A.: 2002, Solar phenomena associated with “EIT waves”. Astrophys. J. 569, 1009.  DOI. ADS. ADSCrossRefGoogle Scholar
  3. Carley, E.P., Long, D.M., Byrne, J.P., Zucca, P., Bloomfield, D.S., McCauley, J., Gallagher, P.T.: 2013, Quasiperiodic acceleration of electrons by a plasmoid-driven shock in the solar atmosphere. Nat. Phys. 9, 811.  DOI. ADS. CrossRefGoogle Scholar
  4. Chen, P.F.: 2006, The relation between EIT waves and solar flares. Astrophys. J. Lett. 641, L153.  DOI. ADS. ADSCrossRefGoogle Scholar
  5. Chen, P.F.: 2009, The relation between EIT waves and coronal mass ejections. Astrophys. J. Lett. 698, L112.  DOI. ADS. ADSCrossRefGoogle Scholar
  6. Chen, P.F., Wu, S.T., Shibata, K., Fang, C.: 2002, Evidence of EIT and Moreton waves in numerical simulations. Astrophys. J. Lett. 572, L99.  DOI. ADS. ADSCrossRefGoogle Scholar
  7. Cliver, E.W., Webb, D.F., Howard, R.A.: 1999, On the origin of solar metric type II bursts. Solar Phys. 187, 89.  DOI. ADS. ADSCrossRefGoogle Scholar
  8. Cliver, E.W., Nitta, N.V., Thompson, B.J., Zhang, J.: 2004, Coronal shocks of November 1997 revisited: the cme type II timing problem. Solar Phys. 225, 105.  DOI. ADS. ADSCrossRefGoogle Scholar
  9. Cliver, E.W., Laurenza, M., Storini, M., Thompson, B.J.: 2005, On the origins of solar EIT waves. Astrophys. J. 631, 604.  DOI. ADS. ADSCrossRefGoogle Scholar
  10. Delaboudinière, J.-P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., van Dessel, E.L.: 1995, EIT: extreme-ultraviolet imaging telescope for the SOHO mission. Solar Phys. 162, 291.  DOI. ADS. ADSCrossRefGoogle Scholar
  11. Downs, C., Roussev, I.I., van der Holst, B., Lugaz, N., Sokolov, I.V., Gombosi, T.I.: 2011, Studying extreme ultraviolet wave transients with a digital laboratory: direct comparison of extreme ultraviolet wave observations to global magnetohydrodynamic simulations. Astrophys. J. 728, 2.  DOI. ADS. ADSCrossRefGoogle Scholar
  12. Gopalswamy, N.: 2000, Type II solar radio bursts. Am. Geophys. Union Geophys. Monogr. Ser. 119, 123. Washington, D.C. ADS. ADSGoogle Scholar
  13. Gopalswamy, N., Lara, A., Kaiser, M.L., Bougeret, J.-L.: 2001, Near-Sun and near-Earth manifestations of solar eruptions. J. Geophys. Res. 106, 25261.  DOI. ADS. ADSCrossRefGoogle Scholar
  14. Gopalswamy, N., Thompson, W.T., Davila, J.M., Kaiser, M.L., Yashiro, S., Mäkelä, P., Michalek, G., Bougeret, J.-L., Howard, R.A.: 2009, Relation between type II bursts and CMEs inferred from STEREO observations. Solar Phys. 259, 227.  DOI. ADS. ADSCrossRefGoogle Scholar
  15. Gopalswamy, N., Xie, H., Mäkelä, P., Akiyama, S., Yashiro, S., Kaiser, M.L., Howard, R.A., Bougeret, J.-L.: 2010, Interplanetary shocks lacking type II radio bursts. Astrophys. J. 710, 1111.  DOI. ADS. ADSCrossRefGoogle Scholar
  16. Gopalswamy, N., Nitta, N., Akiyama, S., Mäkelä, P., Yashiro, S.: 2012a, Coronal magnetic field measurement from EUV images made by the solar dynamics observatory. Astrophys. J. 744, 72.  DOI. ADS. ADSCrossRefGoogle Scholar
  17. Gopalswamy, N., Xie, H., Yashiro, S., Akiyama, S., Mäkelä, P., Usoskin, I.G.: 2012b, Properties of ground level enhancement events and the associated solar eruptions during solar cycle 23. Space Sci. Rev. 171, 23.  DOI. ADS. ADSCrossRefGoogle Scholar
  18. Gopalswamy, N., Xie, H., Mäkelä, P., Yashiro, S., Akiyama, S., Uddin, W., Srivastava, A.K., Joshi, N.C., Chandra, R., Manoharan, P.K., Mahalakshmi, K., Dwivedi, V.C., Jain, R., Awasthi, A.K., Nitta, N.V., Aschwanden, M.J., Choudhary, D.P.: 2013, Height of shock formation in the solar corona inferred from observations of type II radio bursts and coronal mass ejections. Adv. Space Res. 51, 1981.  DOI. ADS. ADSCrossRefGoogle Scholar
  19. Gopalswamy, N., Akiyama, S., Yashiro, S., Xie, H., Mäkelä, P., Michalek, G.: 2014, Anomalous expansion of coronal mass ejections during solar cycle 24 and its space weather implications. Geophys. Res. Lett. 41, 2673.  DOI. ADS. ADSCrossRefGoogle Scholar
  20. Grechnev, V.V., Afanasyev, A.N., Uralov, A.M., Chertok, I.M., Eselevich, M.V., Eselevich, V.G., Rudenko, G.V., Kubo, Y.: 2011, Coronal shock waves, EUV waves, and their relation to CMEs. III. Shock-associated CME/EUV wave in an event with a two-component EUV transient. Solar Phys. 273, 461.  DOI. ADS. ADSCrossRefGoogle Scholar
  21. Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., Thompson, W.T., St Cyr, O.C., Mentzell, E., Mehalick, K., Lemen, J.R., Wuelser, J.P., Duncan, D.W., Tarbell, T.D., Wolfson, C.J., Moore, A., Harrison, R.A., Waltham, N.R., Lang, J., Davis, C.J., Eyles, C.J., Mapson-Menard, H., Simnett, G.M., Halain, J.P., Defise, J.M., Mazy, E., Rochus, P., Mercier, R., Ravet, M.F., Delmotte, F., Auchere, F., Delaboudiniere, J.P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., Carter, T.: 2008, Sun Earth connection coronal and heliospheric investigation (SECCHI). Space Sci. Rev. 136, 67.  DOI. ADS. ADSCrossRefGoogle Scholar
  22. Kienreich, I.W., Temmer, M., Veronig, A.M.: 2009, STEREO quadrature observations of the three-dimensional structure and driver of a global coronal wave. Astrophys. J. Lett. 703, L118.  DOI. ADS. ADSCrossRefGoogle Scholar
  23. Klassen, A., Aurass, H., Mann, G., Thompson, B.J.: 2000, Catalogue of the 1997 SOHO-EIT coronal transient waves and associated type II radio burst spectra. Astron. Astrophys. Suppl. 141, 357.  DOI. ADS. ADSCrossRefGoogle Scholar
  24. Kouloumvakos, A., Patsourakos, S., Hillaris, A., Vourlidas, A., Preka-Papadema, P., Moussas, X., Caroubalos, C., Tsitsipis, P., Kontogeorgos, A.: 2014, CME expansion as the driver of metric type II shock emission as revealed by self-consistent analysis of high-cadence EUV images and radio spectrograms. Solar Phys. 289, 2123.  DOI. ADS. ADSCrossRefGoogle Scholar
  25. Kozarev, K.A., Korreck, K.E., Lobzin, V.V., Weber, M.A., Schwadron, N.A.: 2011, Off-limb solar coronal wavefronts from SDO/AIA extreme-ultraviolet observations – implications for particle production. Astrophys. J. Lett. 733, L25.  DOI. ADS. ADSCrossRefGoogle Scholar
  26. Liu, W., Ofman, L.: 2014, Advances in observing various coronal EUV waves in the SDO era and their seismological applications (Invited review). Solar Phys. 289, 3233.  DOI. ADS. ADSCrossRefGoogle Scholar
  27. Liu, W., Ofman, L., Nitta, N.V., Aschwanden, M.J., Schrijver, C.J., Title, A.M., Tarbell, T.D.: 2012, Quasi-periodic fast-mode wave trains within a global EUV wave and sequential transverse oscillations detected by SDO/AIA. Astrophys. J. 753, 52.  DOI. ADS. ADSCrossRefGoogle Scholar
  28. Long, D.M., Gallagher, P.T., McAteer, R.T.J., Bloomfield, D.S.: 2008, The kinematics of a globally propagating disturbance in the solar corona. Astrophys. J. Lett. 680, L81.  DOI. ADS. ADSCrossRefGoogle Scholar
  29. Long, D.M., Gallagher, P.T., McAteer, R.T.J., Bloomfield, D.S.: 2011, Deceleration and dispersion of large-scale coronal bright fronts. Astron. Astrophys. 531, A42.  DOI. ADS. ADSCrossRefGoogle Scholar
  30. Long, D.M., Bloomfield, D.S., Gallagher, P.T., Pérez-Suárez, D.: 2014, CorPITA: an automated algorithm for the identification and analysis of coronal “EIT waves”. Solar Phys. 289, 3279.  DOI. ADS. ADSCrossRefGoogle Scholar
  31. Ma, S., Raymond, J.C., Golub, L., Lin, J., Chen, H., Grigis, P., Testa, P., Long, D.: 2011, Observations and interpretation of a low coronal shock wave observed in the EUV by the SDO/AIA. Astrophys. J. 738, 160.  DOI. ADS. ADSCrossRefGoogle Scholar
  32. Magdalenić, J., Marqué, C., Zhukov, A.N., Vršnak, B., Veronig, A.: 2012, Flare-generated type II burst without associated coronal mass ejection. Astrophys. J. 746, 152.  DOI. ADS. ADSCrossRefGoogle Scholar
  33. Moreton, G.E., Ramsey, H.E.: 1960, Recent observations of dynamical phenomena associated with solar flares. Publ. Astron. Soc. Pac. 72, 357.  DOI. ADS. ADSCrossRefGoogle Scholar
  34. Moses, D., Clette, F., Delaboudinière, J.-P., Artzner, G.E., Bougnet, M., Brunaud, J., Carabetian, C., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Newmark, J., Thompson, B., Maucherat, A., Portier-Fozzani, F., Berghmans, D., Cugnon, P., van Dessel, E.L., Gabryl, J.R.: 1997, EIT observations of the extreme ultraviolet Sun. Solar Phys. 175, 571.  DOI. ADS. ADSCrossRefGoogle Scholar
  35. Nelson, G.J., Melrose, D.B.: 1985, In: McLean, D.J., Labrum, N.R. (eds.) Type II Bursts, Cambridge University Press, Cambridge, 333. ADS. Google Scholar
  36. Nitta, N.V., Freeland, S.L., Liu, W.: 2010, An alternative view of the “Masuda” flare. Astrophys. J. Lett. 725, L28.  DOI. ADS. ADSCrossRefGoogle Scholar
  37. Nitta, N.V., Liu, Y., DeRosa, M.L., Nightingale, R.W.: 2012, What are special about ground-level events? Flares, CMEs, active regions and magnetic field connection. Space Sci. Rev. 171, 61.  DOI. ADS. ADSCrossRefGoogle Scholar
  38. Nitta, N.V., Schrijver, C.J., Title, A.M., Liu, W.: 2013a, Large-scale coronal propagating fronts in solar eruptions as observed by the atmospheric imaging assembly on board the solar dynamics observatory – an ensemble study. Astrophys. J. 776, 58.  DOI. ADS. ADSCrossRefGoogle Scholar
  39. Nitta, N.V., Aschwanden, M.J., Boerner, P.F., Freeland, S.L., Lemen, J.R., Wuelser, J.-P.: 2013b, Soft X-ray fluxes of major flares far behind the limb as estimated using STEREO EUV images. Solar Phys. 288, 241.  DOI. ADS. ADSCrossRefGoogle Scholar
  40. Olmedo, O., Vourlidas, A., Zhang, J., Cheng, X.: 2012, Secondary waves and/or the “Reflection” from and “Transmission” through a coronal hole of an extreme ultraviolet wave associated with the 2011 February 15 X2.2 flare observed with SDO/AIA and STEREO/EUVI. Astrophys. J. 756, 143.  DOI. ADS. ADSCrossRefGoogle Scholar
  41. Patsourakos, S., Vourlidas, A.: 2012, On the nature and genesis of EUV waves: a synthesis of observations from SOHO, STEREO, SDO, and hinode (Invited review). Solar Phys. 281, 187.  DOI. ADS. ADSGoogle Scholar
  42. Patsourakos, S., Vourlidas, A., Wang, Y.M., Stenborg, G., Thernisien, A.: 2009, What is the nature of EUV waves? First STEREO 3D observations and comparison with theoretical models. Solar Phys. 259, 49.  DOI. ADS. ADSCrossRefGoogle Scholar
  43. Rouillard, A.P., Sheeley, N.R., Tylka, A., Vourlidas, A., Ng, C.K., Rakowski, C., Cohen, C.M.S., Mewaldt, R.A., Mason, G.M., Reames, D., Savani, N.P., StCyr, O.C., Szabo, A.: 2012, The longitudinal properties of a solar energetic particle event investigated using modern solar imaging. Astrophys. J. 752, 44.  DOI. ADS. ADSCrossRefGoogle Scholar
  44. Schrijver, C.J., Aulanier, G., Title, A.M., Pariat, E., Delannée, C.: 2011, The 2011 February 15 X2 flare, ribbons, coronal front, and mass ejection: interpreting the three-dimensional views from the solar dynamics observatory and STEREO guided by magnetohydrodynamic flux-rope modeling. Astrophys. J. 738, 167.  DOI. ADS. ADSCrossRefGoogle Scholar
  45. Temmer, M., Vrsnak, B., Veronig, A.M.: 2013, The wave-driver system of the off-disk coronal wave of 17 January 2010. Solar Phys. 287, 441.  DOI. ADS. ADSCrossRefGoogle Scholar
  46. Thompson, B.J., Myers, D.C.: 2009, A catalog of coronal “EIT wave” transients. Astrophys. J. Suppl. 183, 225.  DOI. ADS. ADSCrossRefGoogle Scholar
  47. Thompson, B.J., Plunkett, S.P., Gurman, J.B., Newmark, J.S., St. Cyr, O.C., Michels, D.J.: 1998, SOHO/EIT observations of an Earth-directed coronal mass ejection on May 12, 1997. Geophys. Res. Lett. 25, 2465.  DOI. ADS. ADSCrossRefGoogle Scholar
  48. Thompson, B.J., Gurman, J.B., Neupert, W.M., Newmark, J.S., Delaboudinière, J.-P., Cyr, O.C.S., Stezelberger, S., Dere, K.P., Howard, R.A., Michels, D.J.: 1999, SOHO/EIT observations of the 1997 April 7 coronal transient: possible evidence of coronal Moreton waves. Astrophys. J. Lett. 517, L151.  DOI. ADS. ADSCrossRefGoogle Scholar
  49. Uchida, Y.: 1968, Propagation of hydromagnetic disturbances in the solar corona and Moreton’s wave phenomenon. Solar Phys. 4, 30.  DOI. ADS. ADSCrossRefGoogle Scholar
  50. Uchida, Y.: 1974, Behavior of the flare produced coronal MHD wavefront and the occurrence of type II radio bursts. Solar Phys. 39, 431.  DOI. ADS. ADSCrossRefGoogle Scholar
  51. Veronig, A.M., Muhr, N., Kienreich, I.W., Temmer, M., Vršnak, B.: 2010, First observations of a dome-shaped large-scale coronal extreme-ultraviolet wave. Astrophys. J. Lett. 716, L57.  DOI. ADS. ADSCrossRefGoogle Scholar
  52. Vršnak, B., Warmuth, A., Brajša, R., Hanslmeier, A.: 2002, Flare waves observed in helium I 10 830 Å. A link between Hα Moreton and EIT waves. Astron. Astrophys. 394, 299.  DOI. ADS. ADSCrossRefGoogle Scholar
  53. Vršnak, B., Warmuth, A., Temmer, M., Veronig, A., Magdalenić, J., Hillaris, A., Karlický, M.: 2006, Multi-wavelength study of coronal waves associated with the CME-flare event of 3 November 2003. Astron. Astrophys. 448, 739.  DOI. ADS. ADSCrossRefGoogle Scholar
  54. Warmuth, A., Mann, G.: 2011, Kinematical evidence for physically different classes of large-scale coronal EUV waves. Astron. Astrophys. 532, A151.  DOI. ADS. ADSCrossRefGoogle Scholar
  55. Warmuth, A., Vršnak, B., Magdalenić, J., Hanslmeier, A., Otruba, W.: 2004, A multiwavelength study of solar flare waves. I. Observations and basic properties. Astron. Astrophys. 418, 1101.  DOI. ADS. ADSCrossRefGoogle Scholar
  56. Wills-Davey, M.J., Attrill, G.D.R.: 2009, EIT waves: a changing understanding over a solar cycle. Space Sci. Rev. 149, 325.  DOI. ADS. ADSCrossRefGoogle Scholar
  57. Wuelser, J.-P., Lemen, J.R., Tarbell, T.D., Wolfson, C.J., Cannon, J.C., Carpenter, B.A., Duncan, D.W., Gradwohl, G.S., Meyer, S.B., Moore, A.S., Navarro, R.L., Pearson, J.D., Rossi, G.R., Springer, L.A., Howard, R.A., Moses, J.D., Newmark, J.S., Delaboudinière, J.-P., Artzner, G.E., Auchere, F., Bougnet, M., Bouyries, P., Bridou, F., Clotaire, J.-Y., Colas, G., Delmotte, F., Jerome, A., Lamare, M., Mercier, R., Mullot, M., Ravet, M.-F., Song, X., Bothmer, V., Deutsch, W.: 2004, EUVI: the STEREO-SECCHI extreme ultraviolet imager. In: Fineschi, S., Gummin, M.A. (eds.) Telescopes and Instrumentation for Solar Astrophysics, SPIE CS 5171, 111.  DOI. ADS. CrossRefGoogle Scholar
  58. Yashiro, S., Gopalswamy, N., Mäkelä, P., Akiyama, S., Uddin, W., Srivastava, A.K., Joshi, N.C., Chandra, R., Manoharan, P.K., Mahalakshmi, K., Dwivedi, V.C., Jain, R., Awasthi, A.K., Nitta, N.V., Aschwanden, M.J., Choudhary, D.P.: 2014, Homologous flare-CME events and their metric type II radio burst association. Adv. Space Res. 42, 1.  DOI. Google Scholar
  59. Zhao, X.H., Wu, S.T., Wang, A.H., Vourlidas, A., Feng, X.S., Jiang, C.W.: 2011, Uncovering the wave nature of the EIT wave for the 2010 January 17 event through its correlation to the background magnetosonic speed. Astrophys. J. 742, 131.  DOI. ADS. ADSCrossRefGoogle Scholar
  60. Zheng, R., Jiang, Y., Hong, J., Yang, J., Bi, Y., Yang, L., Yang, D.: 2011, A possible detection of a fast-mode extreme ultraviolet wave associated with a mini coronal mass ejection observed by the solar dynamics observatory. Astrophys. J. Lett. 739, L39.  DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Nariaki V. Nitta
    • 1
    Email author
  • Wei Liu
    • 1
    • 2
  • Nat Gopalswamy
    • 3
  • Seiji Yashiro
    • 3
    • 4
  1. 1.Department A021SLockheed Martin Solar and Astrophysics LaboratoryPalo AltoUSA
  2. 2.W.W. Hansen Experimental Physics LaboratoryStanford UniversityStanfordUSA
  3. 3.Code 671NASA Goddard Space Flight CenterGreenbeltUSA
  4. 4.The Catholic University of AmericaWashingtonUSA

Personalised recommendations