Solar Physics

, Volume 289, Issue 12, pp 4533–4543 | Cite as

The Role of Interchange Reconnection in Facilitating a Filament Eruption

  • C. Zhu
  • D. Alexander
  • X. Sun
  • A. Daou


We study the interaction between an erupting solar filament and a nearby coronal hole, based on multi-viewpoint observations from the Solar Dynamics Observatory and STEREO. During the early evolution of the filament eruption, it exhibits a clockwise rotation that brings its easternmost leg in contact with the oppositely aligned field at the coronal hole boundary. The interaction between the two magnetic-field systems is manifested as the development of a narrow contact layer in which we see enhanced EUV brightening and bi-directional flows, suggesting that the contact layer is a region of strong and ongoing magnetic reconnection. The coronal mass ejection (CME) resulting from this eruption is highly asymmetric, with its southern portion opening up to the upper corona, while the northern portion remains closed and connected to the Sun. We suggest that the erupting flux rope that made up the filament reconnected with both the open and closed fields at the coronal hole boundary via interchange reconnection and closed-field disconnection, respectively, which led to the observed CME configuration.


Active regions, magnetic fields Prominences, dynamics Magnetic reconnection 



We thank Stephen Bradshaw for valuable discussions. We also thank the anonymous referee for many useful comments and suggestions that greatly improved this article. This work is supported by NSF SHINE grant AGS-1061899. We also thank SDO, STEREO, and SOHO for their data support.

Supplementary material

11207_2014_592_MOESM1_ESM.avi (7.7 mb)
(AVI 7.7 MB)

(AVI 2.3 MB)


  1. Attrill, G., Nakwacki, M., Harra, L., van Driel-Gesztelyi, L., Mandrini, C., Dasso, S., Wang, J.: 2006, Solar Phys. 238(1), 117. ADSCrossRefGoogle Scholar
  2. Baker, D., Rouillard, A.P., van Driel-Gesztelyi, L., Demoulin, P., Harra, L.K., Lavraud, B., Davies, J.A., Opitz, A., Luhmann, J.G., Sauvaud, J.A., Galvin, A.B.: 2009, Ann. Geophys. 27(10), 3883. ADSCrossRefGoogle Scholar
  3. Cane, H.: 2003, Astrophys. J. 598(2), 1403. ADSCrossRefGoogle Scholar
  4. Crooker, N., Gosling, J., Kahler, S.: 2002, J. Geophys. Res. 107(A2), 1028.  DOI. CrossRefGoogle Scholar
  5. Crooker, N.U., Webb, D.F.: 2006, J. Geophys. Res. 111(A8).  DOI.
  6. Forbes, T.: 2000, J. Geophys. Res. 105(A10), 23153. ADSCrossRefGoogle Scholar
  7. Gilbert, H.R., Alexander, D., Liu, R.: 2007, Solar Phys. 245, 287. ADSCrossRefGoogle Scholar
  8. Gosling, J., Birn, J., Hesse, M.: 1995, Geophys. Res. Lett. 22(8), 869. ADSCrossRefGoogle Scholar
  9. Kliem, B., Török, T., Thompson, W.: 2012, Solar Phys. 281, 137. ADSGoogle Scholar
  10. Krucker, S., Larson, D.E., Lin, R.P., Thompson, B.J.: 1999, Astrophys. J. 519(2), 864. ADSCrossRefGoogle Scholar
  11. Lemen, J.R., Title, A.M., Akin, D.J., et al.: 2012, Solar Phys. 275, 17. ADSCrossRefGoogle Scholar
  12. Liu, R., Alexander, D., Gilbert, H.R.: 2007, Astrophys. J. 661(2), 1260. ADSCrossRefGoogle Scholar
  13. Liu, W., Chen, Q., Petrosian, V.: 2013, Astrophys. J. 767(2), 168. ADSCrossRefGoogle Scholar
  14. Martin, S.F.: 1998, Solar Phys. 182, 107. ADSCrossRefGoogle Scholar
  15. Masson, S., McCauley, P., Golub, L., Reeves, K.K., DeLuca, E.: 2013, preprint, arXiv.
  16. Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, J.T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A., Tomczyk, S.: 2012, Design and ground calibration of the helioseismic and magnetic imager (HMI) instrument on the solar dynamics observatory (SDO). Solar Phys. 275, 229. ISBN 978-1-4614-3672-0.  DOI. ADSCrossRefGoogle Scholar
  17. Schrijver, C.J., DeRosa, M.L.: 2003, Solar Phys. 212(1), 165. ADSCrossRefGoogle Scholar
  18. Sun, X.: 2013, preprint, arXiv.
  19. Sun, X., Hoeksema, J.T., Liu, Y., Wiegelmann, T., Hayashi, K., Chen, Q., Thalmann, J.: 2012, Astrophys. J. 748(2), 77. ADSCrossRefGoogle Scholar
  20. Thompson, W.T., Kliem, B., Török, T.: 2012, Solar Phys. 276, 241. ADSCrossRefGoogle Scholar
  21. Török, T., Kliem, B.: 2005, Astrophys. J. Lett. 630(1), L97. ADSCrossRefGoogle Scholar
  22. van Driel-Gesztelyi, L., Culhane, J., Baker, D., Démoulin, P., Mandrini, C., DeRosa, M., Rouillard, A., Opitz, A., Stenborg, G., Vourlidas, A., et al.: 2012, Solar Phys. 281(1), 237. ADSCrossRefGoogle Scholar
  23. Wiegelmann, T.: 2008, J. Geophys. Res. 113(A3), A03S02.  DOI. ADSGoogle Scholar
  24. Wuelser, J.P., Lemen, J.R., Tarbell, T.D., Wolfson, C., Cannon, J.C., Carpenter, B.A., Duncan, D.W., Gradwohl, G.S., Meyer, S.B., Moore, A.S., et al.: 2004 In: Proceedings of SPIE 5171, 111. Google Scholar
  25. Zhu, C., Alexander, D.: 2014, Solar Phys. 289(1), 279. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Physics and AstronomyRice UniversityHoustonUSA
  2. 2.Department of PhysicsStanford UniversityStanfordUSA

Personalised recommendations