Advertisement

Solar Physics

, Volume 289, Issue 12, pp 4433–4452 | Cite as

Solar Spectral Irradiance Variability in November/December 2012: Comparison of Observations by Instruments on the International Space Station and Models

  • G. ThuillierEmail author
  • G. Schmidtke
  • C. Erhardt
  • B. Nikutowski
  • A. I. Shapiro
  • C. Bolduc
  • J. Lean
  • N. Krivova
  • P. Charbonneau
  • G. Cessateur
  • M. Haberreiter
  • S. Melo
  • V. Delouille
  • B. Mampaey
  • K. L. Yeo
  • W. Schmutz
Article

Abstract

Onboard the International Space Station (ISS), two instruments are observing the solar spectral irradiance (SSI) at wavelengths from 16 to 2900 nm. Although the ISS platform orientation generally precludes pointing at the Sun more than 10 – 14 days per month, in November/December 2012 a continuous period of measurements was obtained by implementing an ISS ‘bridging’ maneuver. This enabled observations to be made of the solar spectral irradiance (SSI) during a complete solar rotation. We present these measurements, which quantify the impact of active regions on SSI, and compare them with data simultaneously gathered from other platforms, and with models of spectral irradiance variability. Our analysis demonstrates that the instruments onboard the ISS have the capability to measure SSI variations consistent with other instruments in space. A comparison among all available SSI measurements during November–December 2012 in absolute units with reconstructions using solar proxies and observed solar activity features is presented and discussed in terms of accuracy.

Keywords

Spectral solar irradiance variability International Space Station SOLSPEC SolACES Solar Modeling 

Notes

Acknowledgements

The SOLSPEC and SolACES investigations are supported by the Centre National d’Etudes Spatiales (France), the Centre National de la Recherche Scientifique (France), the Federal Office for Scientific, Technical and Cultural Affairs (Belgium), and the Bundesministerium für Forschung und Technologie (Germany). The participating institutes are the Service d’Aéronomie du CNRS, now LATMOS, the Institut d’Aéronomie Spatiale de Belgique, the Fraunhofer Institute for Physical Measuring Technique (Freiburg), and the Landessternwarte of Heidelberg. The SOLSPEC and SolACES absolute calibrations have been carried out with the blackbody BB3200g from the Physikalisch-Technische Bundesanstalt (PTB, Braunschweig, Germany), and cross-calibrated at BESSY II (PTB, Berlin, Germany), respectively. SOLAR constitutes an external payload of the ESA COLUMBUS laboratory placed onboard the International Space Station. The SOLAR operations are conducted by the Belgium User Support Operations Center (B-USOC) via the COLUMBUS Control Center of DLR (Oberpfaffenhofen, Germany). SolACES has been developed by the Fraunhofer IPM. EADS Astrium Friedrichshafen supported the institute in performing the qualification and documentation. The project was sponsored by DLR, ESA, and the Fraunhofer Gesellschaft. A. I. Shapiro is supported by the Swiss National Science Foundation under grant CRSI122-130642 (FUPSOL) and 100020 140573. C. Bolduc and P. Charbonneau are supported by a team grant and a doctoral fellowship from the Fond Québécois pour la Recherche en Nature et Technologie. We are happy to thank J. Harder and, M. Snow and M. DeLand for providing the SIM data and Mg II index, respectively, and B-USOC for providing the raw SOLSPEC data used in this study. The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7 2012) under grant agreement No. 313188 (SOLID). G. Cessateur is supported by the FP7 programme (eHeroes, No. 284461). J. Lean acknowledges NASA support.

Finally, we thank the referee for his valuable report.

References

  1. Anet, J.G., Muthers, S., Rozanov, E.V., Raible, C.C., Stenke, A., Shapiro, A.I., Bronnimann, S., Arfeuille, F., Brugnara, Y., Beer, J., Steinhilber, F., Schmutz, W., Peter, T.: 2013, Clim. Past Discuss. 9, 6179.  DOI. ADSCrossRefGoogle Scholar
  2. Bolduc, C., Charbonneau, P., Dumoulin, V., Bourqui, M.S., Crouch, A.D.: 2012, Solar Phys. 279, 383.  DOI. ADSCrossRefGoogle Scholar
  3. Bovensmann, H., Burrows, J.P., Buchwitz, M., Frerick, J., Noel, S., Rozanof, V.V., Chance, K.V., Goede, A.P.H.: 1999, J. Atmos. Sci. 56, 127.  DOI. ADSCrossRefGoogle Scholar
  4. Brueckner, G.E., Edlow, K.L., Floyd, L.E., Lean, J.L., VanHoosier, M.E.: 1993, J. Geophys. Res. 98, 10695.  DOI. ADSCrossRefGoogle Scholar
  5. Cebula, R.P., DeLand, M.T., Schlesinger, B.M.: 1992, J. Geophys. Res. 97(D11), 11613.  DOI. ADSCrossRefGoogle Scholar
  6. Cessateur, G., Shapiro, A.I., Yeo, K.L., Krivova, N.A., Tagirov, R., Adams, W., Schmutz, W.: 2014, Astron. Astrophys., submitted. Google Scholar
  7. Crouch, A.D., Charbonneau, P., Beaubien, G., Paquin-Ricard, D.: 2008, Astrophys. J. 677, 723.  DOI. ADSCrossRefGoogle Scholar
  8. DeLand, M.T., Cebula, R.P.: 2008, J. Geophys. Res. 113, A11103.  DOI. ADSCrossRefGoogle Scholar
  9. Dominique, M., Hochedez, J.-F., Schmutz, W., Dammash, I.E., Shapiro, A.I., Kretzchmar, M., Zhukov, A.N., Gillotay, D., Stockman, Y., Benmoussa, A.: 2013, Solar Phys. 286, 21.  DOI. ADSCrossRefGoogle Scholar
  10. Fontenla, J.M., Balasubramaniam, K.S., Harder, J.: 2007, Astrophys. J. 667, 1243.  DOI. ADSCrossRefGoogle Scholar
  11. Fontenla, J.M., Landi, E., Snow, M., Woods, T.: 2014, Solar Phys. 289, 515.  DOI. ADSCrossRefGoogle Scholar
  12. Haberreiter, M.: 2011, Solar Phys. 274, 473.  DOI. ADSCrossRefGoogle Scholar
  13. Haberreiter, M.: 2012, Proc. IAU Symp. 286, 97.  DOI. ADSGoogle Scholar
  14. Haberreiter, M., Schmutz, W., Hubeny, I.: 2008, Astron. Astrophys. 492, 833.  DOI. ADSCrossRefGoogle Scholar
  15. Haberreiter, M., Dellouille, V., Mampaey, B., Verneeck, C., Del Zanna, G., Wieman, S.: 2014, J. Space Weather Space Clim. under minor revision. Google Scholar
  16. Haigh, J.D., Winning, A., Toumi, R., Harder, J.W.: 2010, Nature 467, 696.  DOI. ADSCrossRefGoogle Scholar
  17. Harder, J.W., Fontenla, J., Lawrence, G., Woods, T.N., Rottman, G.: 2005a, Solar Phys. 230(1–2), 169.  DOI. ADSCrossRefGoogle Scholar
  18. Harder, J.W., Lawrence, G., Fontenla, J., Rottman, G., Woods, T.N.: 2005b, Solar Phys. 230(1–2), 141.  DOI. ADSCrossRefGoogle Scholar
  19. Harder, J.W., Thuillier, G., Richard, E.C., Brown, S.W., Lykke, K.R., Snow, M., McClintock, W.E, Fontenla, J.M., Woods, T.N., Pilewskie, P.: 2010, Solar Phys. 263, 3.  DOI. ADSCrossRefGoogle Scholar
  20. Jacobs, C., Van Hoof, D., Wislez, J.M., Sela, A., Michel, A., This, N., et al.: 2013 BUSOC-ISS SOLAR Bridging Report, IAC-13-B3.4-B6.5.2. Google Scholar
  21. Kenneth, J.H.Ph., Feldman, U., Landi, E.: 2008, Ultraviolet and X-Ray Spectroscopy of the Solar Atmosphere, Cambridge Astrophysics Series 44. Google Scholar
  22. Krivova, N.A., Solanki, S.K., Unruh, Y.C.: 2011, J. Atmos. Solar-Terr. Phys. 73, 223.  DOI. ADSCrossRefGoogle Scholar
  23. Lean, J.: 2000, Geophys. Res. Lett. 27, 2425.  DOI. ADSCrossRefGoogle Scholar
  24. Lean, J.L., DeLand, M.T.: 2012, J. Climate 25, 2556.  DOI. ADSCrossRefGoogle Scholar
  25. Lean, J.L., Woods, T.N., Eparvier, F., Meier, R.R., Strickland, D.J.: 2011, J. Geophys. Res. 116, A01102.  DOI. ADSGoogle Scholar
  26. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, Solar Phys. 275, 17.  DOI. ADSCrossRefGoogle Scholar
  27. McClintock, W.E., Rottman, G.J., Woods, T.N.: 2005, Solar Phys. 230, 225.  DOI. ADSCrossRefGoogle Scholar
  28. Meehl, G.A., Tebaldi, C., Walton, G., Easterling, D., McDaniel, L.: 2009, Geophys. Res. Lett. 36(23), L23701.  DOI. ADSCrossRefGoogle Scholar
  29. Rottman, G.: 2000, Space Sci. Rev. 94(1/2), 83.  DOI. ADSCrossRefGoogle Scholar
  30. Rottman, G.J.: 2005, Solar Phys. 230, 7.  DOI. ADSCrossRefGoogle Scholar
  31. Rottman, G.J., Woods, T.N., Sparn, T.P.: 1993, J. Geophys. Res. 98, 10667.  DOI. ADSCrossRefGoogle Scholar
  32. Schmidt, G.A., Jungclaus, J.H., Ammann, C.M., Bard, E., Braconnot, P., Crowley, T.J., et al.: 2011, Geosci. Model Dev. 4, 33.  DOI. ADSCrossRefGoogle Scholar
  33. Schmidtke, G., Fröhlich, C., Thuillier, G.: 2006b, Adv. Space Res. 37(2), 255.  DOI. ADSCrossRefGoogle Scholar
  34. Schmidtke, G., Brunner, R., Eberhard, D., Halford, B., Klocke, U., Knothe, M., Konz, W., Riedel, W.J., Wolf, H.: 2006a, Adv. Space Res. 37, 273.  DOI. ADSCrossRefGoogle Scholar
  35. Schmidtke, G., Nikutowski, B., Jacobi, Ch., Brunner, R., Erhardt, Ch., Knecht, S., Scherle, J., Schlagenhauf, J.: 2014, Solar Phys. 289, 1863.  DOI. ADSCrossRefGoogle Scholar
  36. Schmutz, W., Fehlmann, A., Hüsen, G., Meindl, P., Winkler, R., Thuillier, G., et al.: 2009, Metrologia 46, S202.  DOI. ADSCrossRefGoogle Scholar
  37. Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., et al.: 2012, Solar Phys. 275, 229.  DOI. ADSCrossRefGoogle Scholar
  38. Shapiro, A.I., Schmutz, W., Schoell, M., Haberreiter, M., Rozanov, E.: 2010, Astron. Astrophys. 517, A48.  DOI. ADSCrossRefGoogle Scholar
  39. Shapiro, A.V., Rozanov, E., Egorova, T., Shapiro, A.I., Peter, T., Schmutz, W.: 2011, J. Atmos. Solar-Terr. Phys. 73, 348.  DOI. ADSCrossRefGoogle Scholar
  40. Skupin, J., Weber, M., Bovensmann, H., Burrows, J.P.: 2004, The Mg II solar activity proxy indicator derived from GOME and SCIAMACHY. In: Proceedings of the ENVISAT & ERS Symposium (SP-572), ESA Publications Division. Google Scholar
  41. Snow, M., McClintock, W.E., Woods, T.N., White, O.R., Harder, J.W., Rottman, G.: 2005, Solar Phys. 230, 325.  DOI. ADSCrossRefGoogle Scholar
  42. Snow, M., Weber, M., Machol, J., Viereck, R., Richard, E.: 2014, J. Space Weather Space Clim. 4, A04.  DOI. CrossRefGoogle Scholar
  43. Tapping, K.F., DeTracey, B.: 1990, Solar Phys. 127, 321.  DOI. ADSCrossRefGoogle Scholar
  44. Thuillier, G., Foujols, T., Bolsée, D., Gillotay, D., Hersé, M., Peetermans, W., Decuyper, W., Mandel, H., Sperfeld, P., Pape, S., Taubert, D.R., Hartmann, J.: 2009, Solar Phys. 257, 185.  DOI. ADSCrossRefGoogle Scholar
  45. Thuillier, G., DeLand, M., Shapiro, A., Schmutz, W., Bolsée, D., Melo, S.M.L.: 2012, Solar Phys. 277, 245.  DOI. ADSCrossRefGoogle Scholar
  46. Thuillier, G., Bolsée, D., Schmidtke, G., Foujols, Th., Nikutowski, B., Brunner, R., Erhardt, Ch., Shapiro, A.V., Schmutz, W., Hersé, M., Gillotay, D., Mandel, H., Petermanns, W., Decuyper, W.: 2013b, Solar Phys. 289, 1931.  DOI. ADSCrossRefGoogle Scholar
  47. Thuillier, G., Melo, S.M.L., Lean, J., Krivova, N., Bolduc, C., Charbonneau, P., Shapiro, A.V., Schmutz, W., Bolsée, D.: 2013a, Solar Phys. 289, 1115.  DOI. ADSCrossRefGoogle Scholar
  48. Verbeeck, C., Higgins, P.A., Colak, T., Watson, F.T., Delouille, V., Mampaey, B., Qahwaji, R.: 2013, Solar Phys. 283, 67.  DOI. ADSCrossRefGoogle Scholar
  49. Viereck, R.A., Floyd, L.E., Crane, P.C., Woods, T.N., Knapp, B.G., Rottman, G., Weber, M., Puga, L.C.: 2004, Space Weather 2, S10005.  DOI. ADSCrossRefGoogle Scholar
  50. Woods, T.N., Eparvier, F.G., Bayley, S.M., Chamberlain, P.C., Lean, J., Rottman, G.J., Solomon, S.C., Tobiska, W.K., Woodraska, D.L.: 2005, J. Geophys. Res. 110, AO1312.  DOI. ADSCrossRefGoogle Scholar
  51. Woods, T.N., Eparvier, F.G., Hock, R., Jones, A.R., Woodraska, D., Judge, D., Didkovsky, L., Lean, J., Mariska, J., Warren, H., McMullin, D., Chamberlin, P., Berthiaume, G., Bailey, S., Fuller-Rowell, T., Sojka, J., Tobiska, W.K., Viereck, R.: 2012, Solar Phys. 275, 115.  DOI. ADSCrossRefGoogle Scholar
  52. Yeo, K.L., Krivova, N.A., Solanki, S.K., Glassmeier, K.H.: 2014, Astron. Astrophys., in press.  DOI. Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • G. Thuillier
    • 1
    Email author
  • G. Schmidtke
    • 2
  • C. Erhardt
    • 2
  • B. Nikutowski
    • 2
    • 3
  • A. I. Shapiro
    • 4
  • C. Bolduc
    • 5
  • J. Lean
    • 6
  • N. Krivova
    • 7
  • P. Charbonneau
    • 5
  • G. Cessateur
    • 4
  • M. Haberreiter
    • 4
  • S. Melo
    • 8
  • V. Delouille
    • 10
    • 9
  • B. Mampaey
    • 10
    • 9
  • K. L. Yeo
    • 7
  • W. Schmutz
    • 4
  1. 1.LATMOS-CNRSGuyancourtFrance
  2. 2.Fraunhofer Institute for Physical Measurement TechniquesFreiburgGermany
  3. 3.Institute for MeteorologyUniversity of LeipzigLeipzigGermany
  4. 4.Physikalisch-Meteorologisches Observatorium DavosWorld Radiation CenterDavos DorfSwitzerland
  5. 5.Département de PhysiqueUniversité de MontréalMontréalCanada
  6. 6.Space Science DivisionNaval Research LaboratoryWashington, DCUSA
  7. 7.Max-Planck-Institute für SonnensystemforschungGöttigenGermany
  8. 8.Department of PhysicsUniversity of TorontoTorontoCanada
  9. 9.Solar-Terrestrial Centre of ExcellenceBrusselsBelgium
  10. 10.Royal Observatory of BelgiumBrusselsBelgium

Personalised recommendations