Solar Physics

, Volume 289, Issue 11, pp 4031–4045 | Cite as

Global Solar Free Magnetic Energy and Electric Current Density Distribution of Carrington Rotation 2124

  • Tilaye TadesseEmail author
  • Alexei A. Pevtsov
  • T. Wiegelmann
  • P. J. MacNeice
  • S. Gosain


Solar eruptive phenomena, like flares and coronal mass ejections (CMEs), are governed by magnetic fields. To describe the structure of these phenomena one needs information on the magnetic flux density and the electric current density vector components in three dimensions throughout the atmosphere. However, current spectro-polarimetric measurements typically limit the determination of the vector magnetic field to only the photosphere. Therefore, there is considerable interest in accurate modeling of the solar coronal magnetic field using photospheric vector magnetograms as boundary data. In this work, we model the coronal magnetic field for global solar atmosphere using nonlinear force-free field (NLFFF) extrapolation codes implemented to a synoptic maps of photospheric vector magnetic field synthesized from the Vector Spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) as boundary condition. Using the resulting three-dimensional magnetic field, we calculate the three-dimensional electric current density and magnetic energy throughout the solar atmosphere for Carrington rotation 2124 using our global extrapolation code. We found that spatially, the low-lying, current-carrying core field demonstrates a strong concentration of free energy in the active-region core, from the photosphere to the lower corona (about 70 Mm). The free energy density appears largely co-spatial with the electric current distribution.


Active regions, magnetic fields Active regions, models Magnetic fields, corona Magnetic fields, models Magnetic fields, photosphere 



The authors thank the anonymous referee for helpful and detailed comments. Data are courtesy of NASA/SDO and the AIA and HMI science teams. This work utilizes SOLIS data obtained by the NSO Integrated Synoptic Program (NISP), managed by the National Solar Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under a cooperative agreement with the National Science Foundation. This research was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center (GSFC), administered by Oak Ridge Associated Universities through a contract with NASA.


  1. Aly, J.J.: 1984, Astrophys. J. 283, 349. ADSCrossRefGoogle Scholar
  2. Amari, T., Aly, J.J.: 2010, Astron. Astrophys. 522, A52. ADSCrossRefGoogle Scholar
  3. Amari, T., Aly, J.J., Canou, A., Mikic, Z.: 2013, Astron. Astrophys. 553, A43. ADSCrossRefGoogle Scholar
  4. Aschwanden, M.J., Malanushenko, A.: 2012, Solar Phys. 287, 345. ADSCrossRefGoogle Scholar
  5. Balthasar, H.: 2006, Astron. Astrophys. 449, 1169. ADSCrossRefGoogle Scholar
  6. Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., et al.: 1995, Solar Phys. 162, 357. ADSCrossRefGoogle Scholar
  7. Contopoulos, I.: 2013, Solar Phys. 282, 419. ADSCrossRefGoogle Scholar
  8. Fisher, G.H., Longcope, D.W., Metcalf, T.R., Pevtsov, A.A.: 1998, Astrophys. J. 508, 885. ADSCrossRefGoogle Scholar
  9. Forbes, T.G.: 2000, J. Geophys. Res. 105, 23153. ADSCrossRefGoogle Scholar
  10. Gary, G.A.: 2001, Solar Phys. 203, 71. ADSCrossRefGoogle Scholar
  11. Gosain, S., Pevtsov, A.A.: 2013, Solar Phys. 283, 195. ADSCrossRefGoogle Scholar
  12. Gosain, S., Pevtsov, A.A., Rudenko, G.V., Anfinogentov, S.A.: 2013, Astrophys. J. 772, 52. ADSCrossRefGoogle Scholar
  13. He, H., Wang, H.: 2008, J. Geophys. Res. 113, 5. Google Scholar
  14. Howard, R.F.: 1991, Solar Phys. 134, 233. ADSCrossRefGoogle Scholar
  15. Jiang, C., Feng, X.: 2012, Solar Phys. 281, 621. ADSCrossRefGoogle Scholar
  16. Judge, P.G., Habbal, S., Landi, E.: 2013, Solar Phys. 288, 467. ADSCrossRefGoogle Scholar
  17. Karachik, N.V., Pevtsov, A.A., Abramenko, V.I.: 2010, Astrophys. J. 714, 1672. ADSCrossRefGoogle Scholar
  18. Komm, R., Gosain, S., Pevtsov, A.: 2013, Solar Phys. 289, 2399. ADSCrossRefGoogle Scholar
  19. Leka, K.D., Skumanich, A.: 1999, Solar Phys. 188, 3. ADSCrossRefGoogle Scholar
  20. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., et al.: 2012, Solar Phys. 275, 17. ADSCrossRefGoogle Scholar
  21. Lin, H., Penn, M.J., Tomczyk, S.: 2000, Astrophys. J. Lett. 541, L83. ADSCrossRefGoogle Scholar
  22. Liu, Y., Lin, H.: 2008, Astrophys. J. 680, 1496. ADSCrossRefGoogle Scholar
  23. Malanushenko, A., Schrijver, C.J., DeRosa, M.L., Wheatland, M.S., Gilchrist, S.A.: 2012, Astrophys. J. 756, 153. ADSCrossRefGoogle Scholar
  24. Petrie, G.J.D.: 2013, Astrophys. J. 768, 162. ADSCrossRefGoogle Scholar
  25. Petrie, G.J.D., Patrikeeva, I.: 2009, Astrophys. J. 699, 871. ADSCrossRefGoogle Scholar
  26. Pevtsov, A.A., Acton, L.W.: 2001, Astrophys. J. 554, 416. ADSCrossRefGoogle Scholar
  27. Pevtsov, A.A., Canfield, R.C., McClymont, A.N.: 1997, Astrophys. J. 481, 973. ADSCrossRefGoogle Scholar
  28. Régnier, S., Priest, E.R.: 2007a, Astrophys. J. Lett. 669, L53. ADSCrossRefGoogle Scholar
  29. Régnier, S., Priest, E.R.: 2007b, Astron. Astrophys. 468, 701. ADSCrossRefGoogle Scholar
  30. Régnier, S., Priest, E.R., Hood, A.W.: 2008, Astron. Astrophys. 491, 297. ADSCrossRefzbMATHGoogle Scholar
  31. Rudenko, G.V., Anfinogentov, S.A.: 2011, Solar Phys.  DOI. Google Scholar
  32. Schrijver, C.J.: 2009, Adv. Space Res. 43, 739. ADSCrossRefGoogle Scholar
  33. Shimizu, T., Katsukawa, Y., Kubo, M., Lites, B.W., Ichimoto, K., Suematsu, Y.: 2009, Astrophys. J. 696, L66. ADSCrossRefGoogle Scholar
  34. Skumanich, A., Lites, B.W.: 1987, Astrophys. J. 322, 473. ADSCrossRefGoogle Scholar
  35. Song, M.T., Fang, C., Zhang, H.Q., Tang, Y.H., Wu, S.T., Zhang, Y.A.: 2007, Astrophys. J. 666, 491. ADSCrossRefGoogle Scholar
  36. Svalgaard, L., Duvall, T.L. Jr., Scherrer, P.H.: 1978, Solar Phys. 58, 225. ADSCrossRefGoogle Scholar
  37. Tadesse, T., Wiegelmann, T., Inhester, B.: 2009, Astron. Astrophys. 508, 421. ADSCrossRefzbMATHGoogle Scholar
  38. Tadesse, T., Wiegelmann, T., Inhester, B., Pevtsov, A.: 2011, Astron. Astrophys. 527, A30. ADSCrossRefGoogle Scholar
  39. Tadesse, T., Wiegelmann, T., Inhester, B., Pevtsov, A.: 2012a, Solar Phys. 281, 53. ADSGoogle Scholar
  40. Tadesse, T., Wiegelmann, T., Inhester, B., Pevtsov, A.: 2012b, Solar Phys. 277, 119. ADSCrossRefGoogle Scholar
  41. Tadesse, T., Wiegelmann, T., Inhester, B., MacNeice, P., Pevtsov, A., Sun, X.: 2013a, Astron. Astrophys. 550, A14. ADSCrossRefGoogle Scholar
  42. Tadesse, T., Wiegelmann, T., MacNeice, P.J., Olson, K.: 2013b, Astrophys. Space Sci. 347, 21. ADSCrossRefGoogle Scholar
  43. Tadesse, T., Pevtsov, A.A., Wiegelmann, T., MacNeice, P.J., Gosain, S.: 2014a, Astron. Astrophys. 562, A105. ADSCrossRefGoogle Scholar
  44. Tadesse, T., Wiegelmann, T., MacNeice, P.J., Inhester, B., Olson, K., Pevtsov, A.: 2014b, Solar Phys. 289, 831. ADSCrossRefGoogle Scholar
  45. Thalmann, J., Wiegelmann, T.: 2008, Astron. Astrophys. 484, 495. ADSCrossRefGoogle Scholar
  46. Valori, G., Kliem, B., Keppens, R.: 2005, Astron. Astrophys. 433, 335. ADSCrossRefzbMATHGoogle Scholar
  47. Wheatland, M.S., Régnier, S.: 2009, Astrophys. J. Lett. 700, L88. ADSCrossRefGoogle Scholar
  48. Wheatland, M.S., Sturrock, P.A., Roumeliotis, G.: 2000, Astrophys. J. 540, 1150. ADSCrossRefGoogle Scholar
  49. Wiegelmann, T.: 2004, Solar Phys. 219, 87. ADSCrossRefGoogle Scholar
  50. Wiegelmann, T.: 2007, Solar Phys. 240, 227. ADSCrossRefGoogle Scholar
  51. Wiegelmann, T., Inhester, B.: 2010, Astron. Astrophys. 516, A107. ADSCrossRefGoogle Scholar
  52. Wiegelmann, T., Inhester, B., Sakurai, T.: 2006, Solar Phys. 233, 215. ADSCrossRefGoogle Scholar
  53. Wiegelmann, T., Sakurai, T.: 2012, Living Rev. Solar Phys. 9(5).

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Tilaye Tadesse
    • 1
    Email author
  • Alexei A. Pevtsov
    • 2
  • T. Wiegelmann
    • 3
  • P. J. MacNeice
    • 1
  • S. Gosain
    • 2
  1. 1.NASAGoddard Space Flight CenterGreenbeltUSA
  2. 2.National Solar ObservatorySunspotUSA
  3. 3.Max Planck Institut für SonnensystemforschungKatlenburg-LindauGermany

Personalised recommendations