Solar Physics

, Volume 289, Issue 11, pp 4173–4208 | Cite as

An Ensemble Study of a January 2010 Coronal Mass Ejection (CME): Connecting a Non-obvious Solar Source with Its ICME/Magnetic Cloud

  • D. F. Webb
  • M. M. Bisi
  • C. A. de Koning
  • C. J. Farrugia
  • B. V. Jackson
  • L. K. Jian
  • N. Lugaz
  • K. Marubashi
  • C. Möstl
  • E. P. Romashets
  • B. E. Wood
  • H.-S. Yu


A distinct magnetic cloud (MC) was observed in-situ at the Solar TErrestrial RElations Observatory (STEREO)-B on 20 – 21 January 2010. About three days earlier, on 17 January, a bright flare and coronal mass ejection (CME) were clearly observed by STEREO-B, which suggests that this was the progenitor of the MC. However, the in-situ speed of the event, several earlier weaker events, heliospheric imaging, and a longitude mismatch with the STEREO-B spacecraft made this interpretation unlikely. We searched for other possible solar eruptions that could have caused the MC and found a faint filament eruption and the associated CME on 14 – 15 January as the likely solar source event. We were able to confirm this source by using coronal imaging from the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI)/EUVI and COR and Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronograph (LASCO) telescopes and heliospheric imaging from the Solar Mass Ejection Imager (SMEI) and the STEREO/Heliospheric Imager instruments. We use several empirical models to understand the three-dimensional geometry and propagation of the CME, analyze the in-situ characteristics of the associated ICME, and investigate the characteristics of the MC by comparing four independent flux-rope model fits with the launch observations and magnetic-field orientations. The geometry and orientations of the CME from the heliospheric-density reconstructions and the in-situ modeling are remarkably consistent. Lastly, this event demonstrates that a careful analysis of all aspects of the development and evolution of a CME is necessary to correctly identify the solar counterpart of an ICME/MC.

Supplementary material

11207_2014_571_MOESM1_ESM.gif (4.6 mb)
(GIF 4.6 MB)
11207_2014_571_MOESM2_ESM.mpg (615 kb)
(MPG 615 kB)
11207_2014_571_MOESM3_ESM.mpg (608 kb)
(MPG 608 kB) (23.3 mb)
(MOV 23.3 MB)
11207_2014_571_MOESM5_ESM.pdf (10.6 mb)
(PDF 10.6 MB)
11207_2014_571_MOESM7_ESM.avi (8.5 mb)
(AVI 8.5 MB)
11207_2014_571_MOESM8_ESM.avi (7.9 mb)
(AVI 7.9 MB)
11207_2014_571_MOESM9_ESM.avi (6.5 mb)
(AVI 6.5 MB)
11207_2014_571_MOESM11_ESM.mpeg (2.5 mb)
(MPEG 2.5 MB)
11207_2014_571_MOESM12_ESM.mpeg (12.7 mb)
(MPEG 12.7 MB)
11207_2014_571_MOESM13_ESM.mpeg (2.6 mb)
(MPEG 2.6 MB)


  1. Al-Haddad, N., Nieves-Chinchilla, T., Savani, N.P., Möstl, C., Marubashi, K., Hidalgo, M.A., Roussev, I.I., Poedts, S., Farrugia, C.J.: 2013, Magnetic field configuration models and reconstruction methods for interplanetary coronal mass ejections. Solar Phys. 284, 129. DOI. ADSCrossRefGoogle Scholar
  2. Anderson, B.J., Acuña, M.H., Lohr, D.A., Scheifele, J., Raval, A., Korth, H., Slavin, J.A.: 2007, The magnetometer instrument on MESSENGER. Space Sci. Rev. 131, 417. ADSCrossRefGoogle Scholar
  3. Bisi, M.M., Jackson, B.V., Hick, P.P., Buffington, A., Odstrcil, D., Clover, J.M.: 2008, Three-dimensional reconstructions of the early November 2004 coordinated data analysis workshop geomagnetic storms: analyses of STELab IPS speed and SMEI density data. J. Geophys. Res. 113, A00A11. DOI. ADSGoogle Scholar
  4. Bothmer, V., Schwenn, R.: 1998, The structure and origin of magnetic clouds in the solar wind. Ann. Geophys. 16, 1. ADSCrossRefGoogle Scholar
  5. Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., et al.: 1995, The large angle spectroscopic coronagraph (LASCO). Solar Phys. 162, 357. DOI. ADSCrossRefGoogle Scholar
  6. Burlaga, L.F.: 1988, Magnetic clouds and force-free fields with constant alpha. J. Geophys. Res. 93, 7217. ADSCrossRefGoogle Scholar
  7. Burlaga, L.F., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations. J. Geophys. Res. 86, 6673. ADSCrossRefGoogle Scholar
  8. Chen, J., Howard, R.A., Brueckner, G.E., Santoro, R., Krall, J., Paswaters, S.E., et al.: 1997, Evidence of an erupting magnetic flux rope: LASCO coronal mass ejection of 1997 April 13. Astrophys. J. Lett. 490, L191. ADSCrossRefGoogle Scholar
  9. Colaninno, R.C., Vourlidas, A.: 2009, First determination of the true mass of coronal mass ejections: a novel approach to using the two STEREO viewpoints. Astrophys. J. 698, 852. DOI. ADSCrossRefGoogle Scholar
  10. Cremades, H., Bothmer, V.: 2004, On the three-dimensional configuration of coronal mass ejections. Astron. Astrophys. 442, 307. ADSCrossRefGoogle Scholar
  11. Davies, J.A., Harrison, R.A., Rouillard, A.P., Sheeley, N.R., Perry, C.H., Bewsher, D., et al.: 2009, A synoptic view of solar transient evolution in the inner heliosphere using the heliospheric imagers on STEREO. Geophys. Res. Lett. 36, L02102. DOI. ADSCrossRefGoogle Scholar
  12. Davis, C.J., Davies, J.A., Lockwood, M., Rouillard, A.P., Eyles, C.J., Harrison, R.A.: 2009, Stereoscopic imaging of an Earth-impacting solar coronal mass ejection: a major milestone for the STEREO mission. Geophys. Res. Lett. 36, L08102. ADSGoogle Scholar
  13. de Koning, C.A., Pizzo, V.J.: 2011, Polarimetric localization: a new tool for calculating the CME speed and direction of propagation in near-real time. Space Weather 9, S03001. DOI. ADSCrossRefGoogle Scholar
  14. de Koning, C.A., Pizzo, V.J., Biesecker, D.A.: 2009, Geometric localization of CMEs in 3D space using STEREO beacon data: first results. Solar Phys. 256, 167. DOI. ADSCrossRefGoogle Scholar
  15. Delaboudinière, J.P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., et al.: 1995, EIT: extreme-ultraviolet imaging telescope for the SoHO mission. Solar Phys. 162, 291. DOI. ADSCrossRefGoogle Scholar
  16. Domingo, V., Fleck, B., Poland, A.I.: 1995, The SOHO mission: an overview. Solar Phys. 162, 1. DOI. ADSCrossRefGoogle Scholar
  17. Domingue, D.L., Russell, C.T. (eds.): 2007, The MESSENGER mission to Mercury. Space Sci. Rev. 131, 1. DOI. ADSCrossRefGoogle Scholar
  18. Eyles, C.J., Simnett, G.M., Cooke, M.P., Jackson, B.V., Buffington, A., Hick, P.P., Waltham, N.R., King, J.M., Anderson, P.A., Holladay, P.E.: 2003, The solar mass ejection imager (SMEI). Solar Phys. 217, 319. DOI. ADSCrossRefGoogle Scholar
  19. Eyles, C.J., Harrison, R.A., Davis, C.J., Waltham, N.R., Shaughnessy, B.M., Mapson-Menard, H.C.A., et al.: 2009, The heliospheric imagers onboard the STEREO mission. Solar Phys. 254, 387. DOI. ADSCrossRefGoogle Scholar
  20. Farrugia, C.J., Burlaga, L.F., Osherovich, V.A., Richardson, I.G., Freeman, M.P., Lepping, R.P., Lazarus, A.J.: 1993, A study of an expanding interplanetary magnetic cloud and its interaction with the Earth’s magnetosphere: the interplanetary aspect. J. Geophys. Res. 98, 7621. ADSCrossRefGoogle Scholar
  21. Galvin, A.B., Kistler, L.M., Popecki, M.A., Farrugia, C.J., Simunac, K.D.C., Ellis, L., et al.: 2008, The plasma and suprathermal ion composition (PLASTIC) investigation on the STEREO observatories. Space Sci. Rev. 136, 437. ADSCrossRefGoogle Scholar
  22. Gibson, S.E., Low, B.C.: 1998, A time-dependent three-dimensional magnetohydrodynamic model of the coronal mass ejection. Astrophys. J. 493, 460. DOI. ADSCrossRefGoogle Scholar
  23. Goldstein, H.: 1983, On the field configuration in magnetic clouds. In: Neugebauer, M. (ed.) Solar Wind Five, CP-2280, NASA/JPL, Pasadena, 731. Google Scholar
  24. Gosling, J.T., Szabo, A.: 2008, Bifurcated current sheets produced by magnetic reconnection in the solar wind. J. Geophys. Res. 113, A10103. DOI. ADSCrossRefGoogle Scholar
  25. Grechnev, V.V., Afanasyev, A.N., Uralov, A.M., Chertok, I.M., Eselevich, M.V., Eselevich, V.G., Rudenko, G.V., Kubo, Y.: 2011, Coronal shock waves, EUV waves, and their relation to CMEs. III. Shock-associated CME/EUV wave in an event with a two-component EUV transient. Solar Phys. 273, 461. DOI. ADSCrossRefGoogle Scholar
  26. Harrison, R.A., Davies, J.A., Möstl, C., Liu, Y., Temmer, M., Bisi, M.M., et al.: 2012, An analysis of the origin and propagation of the multiple coronal mass ejections of 2010 August 1. Astrophys. J. 750, 45. ADSCrossRefGoogle Scholar
  27. Howard, T.A., DeForest, C.E.: 2012a, Inner heliospheric flux rope evolution via imaging of coronal mass ejections. Astrophys. J. 746, 64. ADSCrossRefGoogle Scholar
  28. Howard, T.A., DeForest, C.E.: 2012b, The Thomson surface. I. Reality and myth. Astrophys. J. 52, 130. ADSCrossRefGoogle Scholar
  29. Howard, T.A., Nandy, D., Koepke, A.C.: 2008, Kinematic properties of solar coronal mass ejections: correction for projection effects in spacecraft coronagraph measurements. J. Geophys. Res. 113, A01104. ADSGoogle Scholar
  30. Howard, T.A., Tappin, S.J.: 2010, The application of a new phenomenological coronal mass ejection model to space weather forecasting. Space Weather 8, S07004. ADSCrossRefGoogle Scholar
  31. Howard, T.A., Fry, C.D., Johnston, J.C., Webb, D.F.: 2007, On the evolution of coronal mass ejections in the interplanetary medium. Astrophys. J. 667, 610. ADSCrossRefGoogle Scholar
  32. Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., et al.: 2008, Sun Earth connection coronal and heliospheric investigation (SECCHI). Space Sci. Rev. 136, 67. ADSCrossRefGoogle Scholar
  33. Howard, T.A., Howard, T.A., Bisi, M.M., Buffington, A., Clover, J.M., Cooke, M.P., Eyles, C.J., Hick, P.P., Holladay, P.E., Jackson, B.V., Johnston, J.C., et al.: 2013, The solar mass ejection imager and its heliospheric imaging legacy. Space Sci. Rev. 180, 1. ADSCrossRefGoogle Scholar
  34. Hu, Q., Sonnerup, B.U.Ö.: 2002, Reconstruction of magnetic clouds in the solar wind: orientations and configurations. J. Geophys. Res. 107, A7. Google Scholar
  35. Hu, Q., Smith, C.W., Ness, N.F., Skoug, R.M.: 2004, Multiple flux rope magnetic ejecta in the solar wind. J. Geophys. Res. 109, A03102. ADSGoogle Scholar
  36. Jackson, B.V.: 2012, The 3D analysis of the heliosphere using interplanetary scintillation and Thomson-scattering observations. In: Bhardwaj, A., Yau, A. (eds.) Adv. Geosci., Planet. Sci., Terr. Sci. 30, 69. DOI. Google Scholar
  37. Jackson, B.V., Buffington, A., Hick, P.P., Altrock, R.C., Figueroa, S., Holladay, P.E., et al.: 2004, The solar mass ejection imager (SMEI); the mission. Solar Phys. 225, 177. DOI. ADSCrossRefGoogle Scholar
  38. Jackson, B.V., Buffington, A., Hick, P.P., Wang, X., Webb, D.: 2006, Preliminary 3D analysis of the heliospheric response to the 28 October 2003 CME using SMEI white-light observations. J. Geophys. Res. 111, A04S91. DOI. ADSGoogle Scholar
  39. Jackson, B.V., Buffington, A., Hick, P.P., Clover, J.M., Bisi, M.M., Webb, D.F.: 2010a, The 26 April 2008 CME: SMEI 3-D reconstruction of an ICME interacting with a co-rotating solar wind density enhancement. Astrophys. J. 724, 829. ADSCrossRefGoogle Scholar
  40. Jackson, B.V., Hick, P.P., Buffington, A., Bisi, M.M., Clover, J.M.: 2010b, Solar mass ejection imager (SMEI) and interplanetary scintillation (IPS) 3D-reconstructions of the inner heliosphere. Adv. Geosci. 21, 339. Google Scholar
  41. Jackson, B.V., Hick, P.P., Buffington, A., Bisi, M.M., Clover, J.M., Tokumaru, M., Kojima, M., Fujiki, K.: 2011, Three-dimensional reconstruction of heliospheric structure using iterative tomography: a review. J. Atmos. Solar-Terr. Phys. 73, 1214. DOI. ADSCrossRefGoogle Scholar
  42. Jackson, B.V., Clover, J.M., Hick, P.P., Buffington, A., Bisi, M.M., Tokumaru, M.: 2013, Inclusion of real-time in-situ measurements into the UCSD time-dependent tomography and its use as a forecast algorithm. Solar Phys. 285, 151. DOI. ADSCrossRefGoogle Scholar
  43. Jian, L., Russell, C.T., Luhmann, J.G., Skoug, R.M.: 2006, Properties of interplanetary coronal mass ejections at one AU during 1995 – 2004. Solar Phys. 239, 393. DOI. ADSCrossRefGoogle Scholar
  44. Kahler, S.W., Webb, D.F.: 2007, V-arc interplanetary coronal mass ejections observed with the solar mass ejection imager. J. Geophys. Res. 112, A09103. ADSGoogle Scholar
  45. Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: an introduction. Space Sci. Rev. 136, 5. ADSCrossRefGoogle Scholar
  46. Khrabrov, A.V., Sonnerup, B.U.Ö.: 1998, DeHoffmann–Teller analysis. In: Paschmann, G., Daly, P.W. (eds.) Analysis Methods for Multi-Spacecraft Data, Int. Space Sci. Inst, Report, Bern, Switzerland, 221. Google Scholar
  47. Krall, J.: 2007, Are all coronal mass ejections hollow flux ropes? Astrophys. J. 657, 559. ADSCrossRefGoogle Scholar
  48. Lepping, R.P., Behannon, K.W.: 1980, Magnetic field directional discontinuities: 1. Minimum variance analysis errors. J. Geophys. Res. 85, 4695. ADSCrossRefGoogle Scholar
  49. Lepping, R.P., Jones, J.A., Burlaga, L.F.: 1990, Magnetic field structure of interplanetary magnetic clouds at 1 AU. J. Geophys. Res. 95, 11957. ADSCrossRefGoogle Scholar
  50. Lugaz, N., Manchester, W.B. IV, Gombosi, T.I.: 2005, Numerical simulation of the interaction of two coronal mass ejections from Sun to Earth. Astrophys. J. 634, 651. ADSCrossRefGoogle Scholar
  51. Lugaz, N., Vourlidas, A., Roussev, I.I.: 2009, Deriving the radial distances of wide coronal mass ejections from elongation measurements in the heliosphere—application to CME-CME interaction. Ann. Geophys. 27, 3479. ADSCrossRefGoogle Scholar
  52. Luhmann, J.G., Curtis, D.W., Schroeder, P., McCaulay, J., Lin, R.P., Larson, D.E., et al.: 2008, STEREO IMPACT investigation goals, measurements, and data products overview. Space Sci. Rev. 136, 117. ADSCrossRefGoogle Scholar
  53. Marubashi, K., Lepping, R.P.: 2007, Long-duration magnetic clouds: a comparison of analyses using torus- and cylinder-shaped flux rope models. Ann. Geophys. 25, 2453. ADSCrossRefGoogle Scholar
  54. Millward, G., Biesecker, D.A., Pizzo, V.J., de Koning, C.A.: 2013, An operational software tool for the analysis of coronagraph images: determining CME parameters for input into heliospheric models. Space Weather 11, 57. DOI. ADSCrossRefGoogle Scholar
  55. Möstl, C., Farrugia, C.J., Miklenic, C., Temmer, M., Galvin, A.B., Luhmann, J.G., Kilpua, E.K.J., Leitner, M., Nieves-Chincilla, T., Veronig, A., Biernat, H.K.: 2009, Multi-spacecraft recovery of a magnetic cloud and its origin from magnetic reconnection on the Sun. J. Geophys. Res. 114, A04102. DOI. ADSGoogle Scholar
  56. Muhr, N., Veronig, A.M., Kienreich, I.W., Temmer, M., Vrsnak, B.: 2011, Analysis of characteristic parameters of large-scale coronal waves observed by the solar-terrestrial relations observatory/extreme ultraviolet imager. Astrophys. J. 739, 8. CrossRefGoogle Scholar
  57. Pizzo, V.J., Biesecker, D.A.: 2004, Geometric localization of STEREO CMEs. Geophys. Res. Lett. 31, L21802. DOI. ADSCrossRefGoogle Scholar
  58. Qiu, J., Hu, Q., Howard, T.A., Yurchyshyn, V.B.: 2007, On the magnetic flux budget in low-corona magnetic reconnection and interplanetary coronal mass ejections. Astrophys. J. 695, 758. ADSCrossRefGoogle Scholar
  59. Riley, P., Linker, J.A., Lionello, R., Mikic, Z., Odstrcil, D., Hidalgo, M.A., Cid, C., Hu, Q., Lepping, R.P., Lynch, B.J., Rees, A.: 2004, Fitting flux ropes to a global MHD solution: a comparison of techniques. J. Atmos. Solar-Terr. Phys. 66, 1321. ADSCrossRefGoogle Scholar
  60. Rouillard, A.P., Davies, J.A., Forsyth, R.J., Rees, A., Davis, C.J., Harrison, R.A., et al.: 2008, Bifurcated current sheets produced by magnetic reconnection in the solar wind. Geophys. Res. Lett. 35, L10110. DOI. ADSCrossRefGoogle Scholar
  61. Sauvaud, J.-A., Larson, D., Aoustin, C., Curtis, D., Médale, J.-L., Fedorov, A., et al.: 2008, The IMPACT solar wind analyzer (SWEA). Space Sci. Rev. 136, 227. ADSCrossRefGoogle Scholar
  62. Sheeley, N.R. Jr., Walters, J.H., Wang, Y.M., Howard, R.A.: 1999, Continuous tracking of coronal outflows: two kinds of coronal mass ejections. J. Geophys. Res. 104, 24739. ADSCrossRefGoogle Scholar
  63. Sheeley, N.R. Jr., Herbst, A.D., Palatchi, C.A., Wang, Y.-M., Howard, R.A., Moses, J.D., et al.: 2008, Heliospheric images of the solar wind at Earth. Astrophys. J. 675, 853. ADSCrossRefGoogle Scholar
  64. Sonnerup, B.U.Ö., Cahill, L.J.: 1967, Magnetopause structure and attitude from Explorer observations. J. Geophys. Res. 72, 171. ADSCrossRefGoogle Scholar
  65. Stenborg, G., Cobelli, P.J.: 2003, A wavelet packets equalization technique to reveal the multiple spatial-scale nature of coronal structures. Astron. Astrophys. 398, 1185. ADSCrossRefGoogle Scholar
  66. Tappin, S.J., Howard, T.A.: 2009, Direct observation of a corotating interaction region by three spacecraft. Astrophys. J. 702, 862. DOI. ADSCrossRefGoogle Scholar
  67. Temmer, M., Vrsnak, B., Veronig, A.M.: 2013, The wave-driver system of the off-disk coronal wave of 17 January 2010. Solar Phys. 287, 441. DOI. ADSCrossRefGoogle Scholar
  68. Thernisien, A., Vourlidas, A., Howard, R.A.: 2009, Forward modeling of coronal mass ejections using STEREO/SECCHI data. Solar Phys. 256, 111. DOI. ADSCrossRefGoogle Scholar
  69. Tóth, G., van der Holst, B., Sokolov, I.V., De Zeeuw, D.L., Gombosi, T.I., Fang, F., et al.: 2012, Adaptive numerical algorithms in space weather modeling. J. Comput. Phys. 231, 870. ADSCrossRefMathSciNetGoogle Scholar
  70. Vandas, M., Romashets, E.P.: 2003, Force-free field with constant alpha in an oblate cylinder: a generalization of the Lundquist solution. Astron. Astrophys. 398, 801. ADSCrossRefGoogle Scholar
  71. Vandas, M., Romashets, E., Geranios, A.: 2010, How do fits of simulated magnetic clouds correspond to their real shapes in 3D? Ann. Geophys. 28, 1581. ADSCrossRefGoogle Scholar
  72. Vandas, M., Romashets, E., Watari, S.: 2005, Magnetic clouds of oblate shapes. Planet. Space Sci. 53(1), 19. ADSCrossRefGoogle Scholar
  73. Veronig, A.M., Muhr, N., Kienreich, J.W., Temmer, M., Vrsnak, B.: 2010, First observations of a dome-shaped large-scale coronal extreme-ultraviolet wave. Astrophys. J. Lett. 716, L57. ADSCrossRefGoogle Scholar
  74. Vourlidas, A., Howard, R.A., Esfandiari, E., Patsourakos, S., Yashiro, S., Michalek, G.: 2010, Comprehensive analysis of coronal mass ejection mass and energy properties over a full solar cycle. Astrophys. J. 722, 1522. DOI. ADSCrossRefGoogle Scholar
  75. Vourlidas, A., Lynch, B.J., Howard, R.A., Li, Y.: 2013, How many CMEs have flux ropes? Deciphering the signatures of shocks, flux ropes, and prominences in coronagraph observations of CMEs. Solar Phys. 284, 179. DOI. ADSGoogle Scholar
  76. Webb, D.F., Mizuno, D.R., Buffington, A., Cooke, M.P., Eyles, C.J., Fry, C.D., et al.: 2006, Solar mass ejection imager (SMEI) observations of CMEs in the heliosphere. J. Geophys. Res. 111, A12101. DOI. ADSCrossRefGoogle Scholar
  77. Webb, D.F., Möstl, C., Jackson, B.V., Bisi, M.M., Howard, T.A., Mulligan, T., et al.: 2012, Heliospheric imaging of 3D density structures during the multiple coronal mass ejections of late July to early August 2010. Solar Phys. 285, 317. ADSCrossRefGoogle Scholar
  78. Wood, B.E., Howard, R.A.: 2009, An empirical reconstruction of the 2008 April 26 coronal mass ejection. Astrophys. J. 702, 901. ADSCrossRefGoogle Scholar
  79. Wood, B.E., Howard, R.A., Socker, D.G.: 2010, Reconstructing the morphology of an evolving coronal mass ejection. Astrophys. J. 715, 1524. ADSCrossRefGoogle Scholar
  80. Wood, B.E., Karovska, M., Chen, J., Brueckner, G.E., Cook, J.W., Howard, R.A.: 1999, Comparison of two coronal mass ejections observed by EIT and LASCO with a model of an erupting magnetic flux rope. Astrophys. J. 512, 484. ADSCrossRefGoogle Scholar
  81. Wood, B.E., Howard, R.A., Thernisien, A., Plunkett, S.P., Socker, D.G.: 2009, Reconstructing the 3D morphology of the 17 May 2008 CME. Solar Phys. 259, 163. ADSCrossRefGoogle Scholar
  82. Wood, B.E., Wu, C.-C., Howard, R.A., Socker, D.G., Rouillard, A.P.: 2011, Empirical reconstruction and numerical modeling of the first geoeffective coronal mass ejection of solar cycle 24. Astrophys. J. 729, 70. ADSCrossRefGoogle Scholar
  83. Zhao, X.H., Wu, S.T., Wang, A.H., Vourlidas, A., Feng, X.S., Jiang, C.W.: 2011, Uncovering the wave nature of the EIT wave for the 2010 January 17 event through its correlation to the background magnetosonic speed. Astrophys. J. 742, 131. ADSCrossRefGoogle Scholar
  84. Zuccarello, F.P., Bemporad, A., Jacobs, C., Mierla, M., Poedts, S., Zuccarello, F.: 2012, The role of streamers in the deflection of coronal mass ejections: comparison between STEREO three-dimensional reconstructions and numerical simulations. Astrophys. J. 744, 66. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • D. F. Webb
    • 1
  • M. M. Bisi
    • 2
  • C. A. de Koning
    • 3
  • C. J. Farrugia
    • 4
  • B. V. Jackson
    • 5
  • L. K. Jian
    • 6
    • 7
  • N. Lugaz
    • 4
  • K. Marubashi
    • 8
    • 9
  • C. Möstl
    • 11
    • 10
  • E. P. Romashets
    • 12
  • B. E. Wood
    • 13
  • H.-S. Yu
    • 5
  1. 1.ISRBoston CollegeChestnut HillUSA
  2. 2.RAL Space Science & Technology Facilities CouncilRutherford Appleton LaboratoryHarwell OxfordUK
  3. 3.NOAA Space Weather Prediction Center and University of ColoradoCIRESBoulderUSA
  4. 4.Space Science Center & Department of PhysicsUniversity of New HampshireDurhamUSA
  5. 5.Center for Astrophysics and Space ScienceUniversity of California, San DiegoLa JollaUSA
  6. 6.Heliophysics Science Division, Code 672NASA Goddard Space Flight CenterGreenbeltUSA
  7. 7.Department of AstronomyUniversity of MarylandCollege ParkUSA
  8. 8.Korea Astronomy and Space Science InstituteDaejeonKorea
  9. 9.SayamaJapan
  10. 10.Institute of PhysicsUniversity of GrazGrazAustria
  11. 11.Space Research InstituteAustrian Academy of SciencesGrazAustria
  12. 12.Lone Star CollegeHoustonUSA
  13. 13.Space Science DivisionNaval Research LaboratoryWashingtonUSA

Personalised recommendations