Solar Physics

, Volume 289, Issue 9, pp 3351–3369 | Cite as

Formation of a Flare-Productive Active Region: Observation and Numerical Simulation of NOAA AR 11158

  • S. ToriumiEmail author
  • Y. Iida
  • K. Kusano
  • Y. Bamba
  • S. Imada
Solar Cycle 24 as seen by SDO


We present a comparison of the Solar Dynamics Observatory (SDO) analysis of NOAA Active Region (AR) 11158 and numerical simulations of flux-tube emergence, aiming to investigate the formation process of this flare-productive AR. First, we use SDO/Helioseismic and Magnetic Imager (HMI) magnetograms to investigate the photospheric evolution and Atmospheric Imaging Assembly (AIA) data to analyze the relevant coronal structures. Key features of this quadrupolar region are a long sheared polarity inversion line (PIL) in the central δ-sunspots and a coronal arcade above the PIL. We find that these features are responsible for the production of intense flares, including an X2.2-class event. Based on the observations, we then propose two possible models for the creation of AR 11158 and conduct flux-emergence simulations of the two cases to reproduce this AR. Case 1 is the emergence of a single flux tube, which is split into two in the convection zone and emerges at two locations, while Case 2 is the emergence of two isolated but neighboring tubes. We find that, in Case 1, a sheared PIL and a coronal arcade are created in the middle of the region, which agrees with the AR 11158 observation. However, Case 2 never builds a clear PIL, which deviates from the observation. Therefore, we conclude that the flare-productive AR 11158 is, between the two cases, more likely to be created from a single split emerging flux than from two independent flux bundles.


Active regions, magnetic fields Flares, relation to magnetic field Interior, convective zone 



The authors thank K. Hayashi (Stanford University) for providing HMI data and P. Démoulin (Paris Observatory) for fruitful discussions. The authors are grateful to the anonymous referee for improving the manuscript and the SDO team for distributing HMI and AIA data. Numerical computations were carried out on Cray XC30 at the Center for Computational Astrophysics, National Astronomical Observatory of Japan. ST is supported by Grant-in-Aid for JSPS Fellows. This work was supported by a Grants-in-Aid for Scientific Research (B) “Understanding and Prediction of Triggering Solar Flares” (23340045, Head Investigator: K. Kusano) from the Ministry of Education, Science, Sports, Technology, and Culture of Japan.


  1. Archontis, V., Hood, A.W., Brady, C.: 2007, Emergence and interaction of twisted flux tubes in the Sun. Astron. Astrophys. 466, 367 – 376.  10.1051/0004-6361:20066508. 2007A%26A...466..367A. ADSCrossRefGoogle Scholar
  2. Archontis, V., Hood, A.W.: 2009, Formation of Ellerman bombs due to 3D flux emergence. Astron. Astrophys. 508, 1469 – 1483.  10.1051/0004-6361/200912455. 2009A%26A...508.1469A. ADSCrossRefGoogle Scholar
  3. Archontis, V., Hood, A.W., Tsinganos, K.: 2013, The emergence of weakly twisted magnetic fields in the Sun. Astrophys. J. 778, 42.  10.1088/0004-637X/778/1/42. 2013ApJ...778...42A. ADSCrossRefGoogle Scholar
  4. Archontis, V., Tsinganos, K., Gontikakis, C.: 2010, Recurrent solar jets in active regions. Astron. Astrophys. 512, L2.  10.1051/0004-6361/200913752. 2010A%26A...512L...2A. ADSCrossRefGoogle Scholar
  5. Bamba, Y., Kusano, K., Yamamoto, T.T., Okamoto, T.J.: 2013, Study on the triggering process of solar flares based on Hinode/SOT observations. Astrophys. J. 778, 48.  10.1088/0004-637X/778/1/48. 2013ApJ...778...48B. ADSCrossRefGoogle Scholar
  6. Chintzoglou, G., Zhang, J.: 2013, Reconstructing the subsurface three-dimensional magnetic structure of a solar active region using SDO/HMI observations. Astrophys. J. Lett. 764, L3.  10.1088/2041-8205/764/1/L3. 2013ApJ...764L...3C. ADSCrossRefGoogle Scholar
  7. D’Silva, S., Choudhuri, A.R.: 1993, A theoretical model for tilts of bipolar magnetic regions. Astron. Astrophys. 272, 621. 1993A%26A...272..621D. ADSGoogle Scholar
  8. Fan, Y.: 2009, Magnetic fields in the solar convection zone. Living Rev. Solar Phys. 6, 4.  10.12942/lrsp-2009-4. 2009LRSP....6....4F. ADSCrossRefGoogle Scholar
  9. Fan, Y., Zweibel, E.G., Lantz, S.R.: 1998, Two-dimensional simulations of buoyantly rising, interacting magnetic flux tubes. Astrophys. J. 493, 480.  10.1086/305122. 1998ApJ...493..480F. ADSCrossRefGoogle Scholar
  10. Fan, Y., Zweibel, E.G., Linton, M.G., Fisher, G.H.: 1998, The rise of kink-unstable magnetic flux tubes in the solar convection zone. Astrophys. J. Lett. 505, L59.  10.1086/311597. 1998ApJ...505L..59F. ADSCrossRefGoogle Scholar
  11. Gontikakis, C., Archontis, V., Tsinganos, K.: 2009, Observations and 3D MHD simulations of a solar active region jet. Astron. Astrophys. 506, L45 – L48.  10.1051/0004-6361/200913026. 2009A%26A...506L..45G. ADSCrossRefGoogle Scholar
  12. Hagyard, M.J., Teuber, D., West, E.A., Smith, J.B.: 1984, A quantitative study relating observed shear in photospheric magnetic fields to repeated flaring. Solar Phys. 91, 115 – 126.  10.1007/BF00213618. 1984SoPh...91..115H. ADSCrossRefGoogle Scholar
  13. Hale, G.E., Ellerman, F., Nicholson, S.B., Joy, A.H.: 1919, The magnetic polarity of sunspots. Astrophys. J. 49, 153.  10.1086/142452. 1919ApJ....49..153H. ADSCrossRefGoogle Scholar
  14. Ilonidis, S., Zhao, J., Kosovichev, A.: 2011, Detection of emerging sunspot regions in the solar interior. Science 333.  10.1126/science.1206253. 2011Sci...333..993I.
  15. Isobe, H., Tripathi, D., Archontis, V.: 2007, Ellerman bombs and jets associated with resistive flux emergence. Astrophys. J. Lett. 657, L53 – L56.  10.1086/512969. 2007ApJ...657L..53I. ADSCrossRefGoogle Scholar
  16. Kusano, K., Bamba, Y., Yamamoto, T.T., Iida, Y., Toriumi, S., Asai, A.: 2012, Magnetic field structures triggering solar flares and coronal mass ejections. Astrophys. J. 760, 31.  10.1088/0004-637X/760/1/31. 2012ApJ...760...31K. ADSCrossRefGoogle Scholar
  17. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17 – 40.  10.1007/s11207-011-9776-8. 2012SoPh..275...17L. ADSCrossRefGoogle Scholar
  18. Linton, M.G., Dahlburg, R.B., Antiochos, S.K.: 2001, Reconnection of twisted flux tubes as a function of contact angle. Astrophys. J. 553, 905 – 921.  10.1086/320974. 2001ApJ...553..905L. ADSCrossRefGoogle Scholar
  19. Linton, M.G., Longcope, D.W., Fisher, G.H.: 1996, The helical kink instability of isolated, twisted magnetic flux tubes. Astrophys. J. 469, 954.  10.1086/177842. 1996ApJ...469..954L. ADSCrossRefGoogle Scholar
  20. Liu, C., Deng, N., Liu, R., Lee, J., Wiegelmann, T., Jing, J., Xu, Y., Wang, S., Wang, H.: 2012, Rapid changes of photospheric magnetic field after tether-cutting reconnection and magnetic implosion. Astrophys. J. Lett. 745, L4.  10.1088/2041-8205/745/1/L4. 2012ApJ...745L...4L. ADSCrossRefGoogle Scholar
  21. Magara, T.: 2007, A possible structure of the magnetic field in solar filaments obtained by flux emergence. Publ. Astron. Soc. Japan 59, L51. 2007PASJ...59L..51M. ADSCrossRefGoogle Scholar
  22. Matsumoto, R., Tajima, T., Chou, W., Okubo, A., Shibata, K.: 1998, Formation of a kinked alignment of solar active regions. Astrophys. J. Lett. 493, L43.  10.1086/311116. 1998ApJ...493L..43M. ADSCrossRefGoogle Scholar
  23. Murray, M.J., Hood, A.W.: 2007, Simple emergence structures from complex magnetic fields. Astron. Astrophys. 470, 709 – 719.  10.1051/0004-6361:20077251. 2007A%26A...470..709M. ADSCrossRefzbMATHGoogle Scholar
  24. Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3 – 15.  10.1007/s11207-011-9841-3. 2012SoPh..275....3P. ADSCrossRefGoogle Scholar
  25. Pevtsov, A.A., Canfield, R.C., Metcalf, T.R.: 1995, Latitudinal variation of helicity of photospheric magnetic fields. Astrophys. J. Lett. 440, L109 – L112.  10.1086/187773. 1995ApJ...440L.109P. ADSCrossRefGoogle Scholar
  26. Poisson, M., López Fuentes, M., Mandrini, C.H., Démoulin, P., Pariat, E.: 2013, Study of magnetic flux emergence and related activity in active region NOAA 10314. Adv. Space Res. 51, 1834 – 1841.  10.1016/j.asr.2012.03.010. 2013AdSpR..51.1834P. ADSCrossRefGoogle Scholar
  27. Sammis, I., Tang, F., Zirin, H.: 2000, The dependence of large flare occurrence on the magnetic structure of sunspots. Astrophys. J. 540, 583 – 587.  10.1086/309303. 2000ApJ...540..583S. ADSCrossRefGoogle Scholar
  28. Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207 – 227.  10.1007/s11207-011-9834-2. 2012SoPh..275..207S. ADSCrossRefGoogle Scholar
  29. Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A., Tomczyk, S.: 2012, Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 229 – 259.  10.1007/s11207-011-9842-2. 2012SoPh..275..229S. ADSCrossRefGoogle Scholar
  30. Schrijver, C.J., Aulanier, G., Title, A.M., Pariat, E., Delannée, C.: 2011, The 2011 February 15 X2 flare, ribbons, coronal front, and mass ejection: interpreting the three-dimensional views from the solar dynamics observatory and STEREO guided by magnetohydrodynamic flux-rope modeling. Astrophys. J. 738, 167.  10.1088/0004-637X/738/2/167. 2011ApJ...738..167S. ADSCrossRefGoogle Scholar
  31. Shibata, K., Magara, T.: 2011, Solar flares: magnetohydrodynamic processes. Living Rev. Solar Phys. 8, 6.  10.12942/lrsp-2011-6. 2011LRSP....8....6S. ADSCrossRefGoogle Scholar
  32. Sun, X., Hoeksema, J.T., Liu, Y., Wiegelmann, T., Hayashi, K., Chen, Q., Thalmann, J.: 2012, Evolution of magnetic field and energy in a major eruptive active region based on SDO/HMI observation. Astrophys. J. 748, 77.  10.1088/0004-637X/748/2/77. 2012ApJ...748...77S. ADSCrossRefGoogle Scholar
  33. Toriumi, S., Yokoyama, T.: 2012, Large-scale 3D MHD simulation on the solar flux emergence and the small-scale dynamic features in an active region. Astron. Astrophys. 539, A22.  10.1051/0004-6361/201118009. 2012A%26A...539A..22T. ADSCrossRefGoogle Scholar
  34. Toriumi, S., Yokoyama, T.: 2013, Three-dimensional magnetohydrodynamic simulation of the solar magnetic flux emergence. Parametric study on the horizontal divergent flow. Astron. Astrophys. 553, A55.  10.1051/0004-6361/201321098. 2013A%26A...553A..55T. ADSCrossRefGoogle Scholar
  35. Toriumi, S., Miyagoshi, T., Yokoyama, T., Isobe, H., Shibata, K.: 2011, Dependence of the magnetic energy of solar active regions on the twist intensity of the initial flux tubes. Publ. Astron. Soc. Japan 63, 407 – 415. 2011PASJ...63..407T. ADSCrossRefGoogle Scholar
  36. Toriumi, S., Ilonidis, S., Sekii, T., Yokoyama, T.: 2013a, Probing the shallow convection zone: rising motion of subsurface magnetic fields in the solar active region. Astrophys. J. Lett. 770, L11.  10.1088/2041-8205/770/1/L11. 2013ApJ...770L..11T. ADSCrossRefGoogle Scholar
  37. Toriumi, S., Iida, Y., Bamba, Y., Kusano, K., Imada, S., Inoue, S.: 2013b, The magnetic systems triggering the M6.6 class solar flare in NOAA active region 11158. Astrophys. J. 773, 128.  10.1088/0004-637X/773/2/128. 2013ApJ...773..128T. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • S. Toriumi
    • 1
    Email author
  • Y. Iida
    • 2
  • K. Kusano
    • 3
    • 4
  • Y. Bamba
    • 3
  • S. Imada
    • 3
  1. 1.Department of Earth and Planetary ScienceUniversity of TokyoTokyoJapan
  2. 2.Institute of Space and Astronautical ScienceJapan Aerospace Exploration AgencySagamiharaJapan
  3. 3.Solar-Terrestrial Environment LaboratoryNagoya UniversityNagoyaJapan
  4. 4.Japan Agency for Marine-Earth Science and Technology (JAMSTEC)YokohamaJapan

Personalised recommendations