Advertisement

Solar Physics

, Volume 289, Issue 7, pp 2399–2418 | Cite as

Hemispheric Distribution of Subsurface Kinetic Helicity and Its Variation with Magnetic Activity

  • R. KommEmail author
  • S. Gosain
  • A. A. Pevtsov
Article

Abstract

We study the hemispheric distribution of the kinetic helicity of subsurface flows in the near-surface layers of the solar convection zone and its variation with magnetic activity. We determine subsurface flows with a ring-diagram analysis applied to Global Oscillation Network Group (GONG) Dopplergrams and Dynamics Program data from the Michelson Doppler Imager (MDI) instrument onboard the Solar and Heliospheric Observatory (SOHO). We determine the average kinetic helicity density as a function of Carrington rotation and latitude. The average kinetic helicity density at all depths and the kinetic helicity, integrated over 2 – 7 Mm, follow the same hemispheric rule as the current/magnetic helicity proxies with predominantly positive values in the southern and negative ones in the northern hemisphere. This holds true for all levels of magnetic activity from quiet to active regions. However, this is a statistical result; only about 55 % of all locations follow the hemispheric rule. But these locations have larger helicity values than those that do not follow the rule. The average values of helicity density increase with depth for all levels of activity, which might reflect an increase of the characteristic size of convective motions with greater depth. The average helicity of subsets of high magnetic activity is about five times larger than that of subsets of low activity. The solar-cycle variation of helicity is thus mainly due to the presence or absence of active regions. During the rising phase of cycle 24, locations of high magnetic activity at low latitudes show a weaker hemispheric behavior compared to the rising phase of cycle 23.

Keywords

Active regions, velocity fields Helicity Helioseismology, observations Velocity fields, interior 

Notes

Acknowledgements

This work utilizes GONG and SOLIS data obtained by the NSO Integrated Synoptic Program (NISP), managed by the National Solar Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under a cooperative agreement with the National Science Foundation. GONG data were acquired by instruments operated by the Big Bear Solar Observatory, High Altitude Observatory, Learmonth Solar Observatory, Udaipur Solar Observatory, Instituto de Astrofísica de Canarias, and Cerro Tololo Interamerican Observatory. The ring-fitting analysis is based on algorithms developed by Haber, Hindman, and Larsen with support from NASA and Stanford University. SOHO is a mission of international cooperation between ESA and NASA. This work was supported by NSF/SHINE Award No. 1062054 to the National Solar Observatory. RK was partially supported by NASA grant NNX10AQ69G to Alysha Reinard. We thank the reviewer for making this a better paper.

References

  1. Bao, S., Zhang, H.: 1998, Patterns of current helicity for the twenty-second solar cycle. Astrophys. J. Lett. 496, L43 – L46.  10.1086/311232. 1998ApJ...496L..43B. ADSCrossRefGoogle Scholar
  2. Basu, S., Antia, H.M., Bogart, R.S.: 2004, Ring-diagram analysis of the structure of solar active regions. Astrophys. J. 610, 1157 – 1168.  10.1086/421843. 2004ApJ...610.1157B. ADSCrossRefGoogle Scholar
  3. Berger, M.A., Field, G.B.: 1984, The topological properties of magnetic helicity. J. Fluid Mech. 147, 133 – 148.  10.1017/S0022112084002019. 1984JFM...147..133B. ADSCrossRefMathSciNetGoogle Scholar
  4. Brun, A.S., Miesch, M.S., Toomre, J.: 2004, Global-scale turbulent convection and magnetic dynamo action in the solar envelope. Astrophys. J. 614, 1073 – 1098.  10.1086/423835. 2004ApJ...614.1073B. ADSCrossRefGoogle Scholar
  5. Corbard, T., Toner, C., Hill, F., Hanna, K.D., Haber, D.A., Hindman, B.W., Bogart, R.S.: 2003, Ring-diagram analysis with GONG++. In: Sawaya-Lacoste, H. (ed.) GONG+ 2002. Local and Global Helioseismology: The Present and Future, ESA SP-517, 255 – 258. 2003ESASP.517..255C. Google Scholar
  6. Egorov, P., Rüdiger, G., Ziegler, U.: 2004, Vorticity and helicity of the solar supergranulation flow-field. Astron. Astrophys. 425, 725 – 728.  10.1051/0004-6361:20040531. 2004A%26A...425..725E. ADSCrossRefGoogle Scholar
  7. Fisher, G.H., Longcope, D.W., Linton, M.G., Fan, Y., Pevtsov, A.A.: 1999, The origin and role of twist in active regions. In: Nunez, M., Ferriz-Mas, A. (eds.) Stellar Dynamos: Nonlinearity and Chaotic Flows, ASP Conf. Ser. 178, 35 – 42. 1999ASPC..178...35F. Google Scholar
  8. Gao, Y., Zhao, J., Zhang, H.: 2012, Analysis on correlations between subsurface kinetic helicity and photospheric current helicity in active regions. Astrophys. J. Lett. 761, L9.  10.1088/2041-8205/761/1/L9. 2012ApJ...761L...9G. ADSCrossRefGoogle Scholar
  9. Gao, Y., Zhao, J., Zhang, H.: 2013, A study of connections between solar flares and subsurface flow fields of active regions. Solar Phys.  10.1007/s11207-013-0274-z. 2013SoPh..tmp...75G. Google Scholar
  10. Gizon, L., Duvall, T.L., Jr.: 2003, Supergranulation supports waves. In: Sawaya-Lacoste, H. (ed.) GONG+ 2002. Local and Global Helioseismology: The Present and Future, ESA SP-517, 43 – 52. 2003ESASP.517...43G. Google Scholar
  11. González Hernández, I., Komm, R., van Driel-Gesztelyi, L., Harra, L., Baker, D., Howe, R.: 2013, Subsurface flows associated with non-Joy oriented active regions: A case study. J. Phys. Conf. Ser. 440, 012050.  10.1088/1742-6596/440/1/012050. ADSCrossRefGoogle Scholar
  12. Gosain, S., Pevtsov, A.A., Rudenko, G.V., Anfinogentov, S.A.: 2013, First synoptic maps of photospheric vector magnetic field from SOLIS/VSM: Non-radial magnetic fields and hemispheric pattern of helicity. Astrophys. J. 772, 52.  10.1088/0004-637X/772/1/52. 2013ApJ...772...52G. ADSCrossRefGoogle Scholar
  13. Haber, D.A., Hindman, B.W., Toomre, J., Bogart, R.S., Larsen, R.M., Hill, F.: 2002, Evolving submerged meridional circulation cells within the upper convection zone revealed by ring-diagram analysis. Astrophys. J. 570, 855 – 864.  10.1086/339631. 2002ApJ...570..855H. ADSCrossRefGoogle Scholar
  14. Hagino, M., Sakurai, T.: 2005, Solar-cycle variation of magnetic helicity in active regions. Publ. Astron. Soc. Japan 57, 481 – 485. 2005PASJ...57..481H. ADSCrossRefGoogle Scholar
  15. Komm, R.W.: 2007, Value-added maps: Fluid-dynamics descriptors from ring diagrams. Astron. Nachr. 328, 269 – 272.  10.1002/asna.200610729. 2007AN....328..269K. ADSCrossRefGoogle Scholar
  16. Komm, R., Gosain, S., Pevtsov, A.: 2013, Active regions with superpenumbral whirls and their subsurface kinetic helicity. Solar Phys.  10.1007/s11207-012-0218-z. 2013SoPh..tmp...15K. Google Scholar
  17. Komm, R., Corbard, T., Durney, B.R., González Hernández, I., Hill, F., Howe, R., Toner, C.: 2004, Solar subsurface fluid dynamics descriptors derived from Global Oscillation Network Group and Michelson Doppler Imager data. Astrophys. J. 605, 554 – 567.  10.1086/382187. 2004ApJ...605..554K. ADSCrossRefGoogle Scholar
  18. Komm, R., Howe, R., Hill, F., González-Hernández, I., Toner, C., Corbard, T.: 2005, Ring analysis of solar subsurface flows and their relation to surface magnetic activity. Astrophys. J. 631, 636 – 646.  10.1086/432413. 2005ApJ...631..636K. ADSCrossRefGoogle Scholar
  19. Komm, R., Howe, R., Hill, F., Miesch, M., Haber, D., Hindman, B.: 2007, Divergence and vorticity of solar subsurface flows derived from ring-diagram analysis of MDI and GONG data. Astrophys. J. 667, 571 – 584.  10.1086/520765. 2007ApJ...667..571K. ADSCrossRefGoogle Scholar
  20. Krause, F., Raedler, K.-H.: 1980, Mean-Field Magnetohydrodynamics and Dynamo Theory, Pergamon Press, Oxford, 19 – 44. 1980opp..bookR....K. CrossRefzbMATHGoogle Scholar
  21. Lesieur, M.: 1987, Turbulence in Fluids. Stochastic and Numerical Modelling, Martinus Nijhoff Publishers, Dordrecht, 66 – 73. 1987tfsn.book.....L. zbMATHGoogle Scholar
  22. Longcope, D.W., Fisher, G.H., Pevtsov, A.A.: 1998, Flux-tube twist resulting from helical turbulence: The sigma-effect. Astrophys. J. 507, 417 – 432.  10.1086/306312. 1998ApJ...507..417L. ADSCrossRefGoogle Scholar
  23. Maurya, R.A., Ambastha, A., Reddy, V.: 2011, Kinetic and magnetic helicities in solar active regions. J. Phys. Conf. Ser. 271, 012003.  10.1088/1742-6596/271/1/012003. 2011JPhCS.271a2003M. ADSCrossRefGoogle Scholar
  24. Miesch, M.S.: 2005, Large-scale dynamics of the convection zone and tachocline. Living Rev. Solar Phys. 2(1).  10.12942/lrsp-2005-1. 2005LRSP....2....1M. http://solarphysics.livingreviews.org/Articles/lrsp-2005-1/.
  25. Moffatt, H.K., Tsinober, A.: 1992, Helicity in laminar and turbulent flow. Annu. Rev. Fluid Mech. 24, 281 – 312.  10.1146/annurev.fl.24.010192.001433. 1992AnRFM..24..281M. ADSCrossRefMathSciNetGoogle Scholar
  26. Pevtsov, A.A., Longcope, D.W.: 2007, Helicity as the ultimate test to the surface dynamo problem. In: Shibata, K., Nagata, S., Sakurai, T. (eds.) New Solar Physics with Solar-B Mission, ASP Conf. Ser. 369, 99 – 102. 2007ASPC..369...99P. Google Scholar
  27. Pevtsov, A.A., Canfield, R.C., Latushko, S.M.: 2001, Hemispheric helicity trend for solar cycle 23. Astrophys. J. Lett. 549, L261 – L263.  10.1086/319179. 2001ApJ...549L.261P. ADSCrossRefGoogle Scholar
  28. Pevtsov, A.A., Canfield, R.C., Metcalf, T.R.: 1995, Latitudinal variation of helicity of photospheric magnetic fields. Astrophys. J. Lett. 440, L109 – L112.  10.1086/187773. 1995ApJ...440L.109P. ADSCrossRefGoogle Scholar
  29. Seehafer, N.: 1996, Nature of the α effect in magnetohydrodynamics. Phys. Rev. E 53, 1283 – 1286.  10.1103/PhysRevE.53.1283. 1996PhRvE..53.1283S. ADSCrossRefGoogle Scholar
  30. Zhang, M.: 2006, Helicity observations of weak and strong fields. Astrophys. J. Lett. 646, L85 – L88.  10.1086/506560. 2006ApJ...646L..85Z. ADSCrossRefGoogle Scholar
  31. Zhao, J., Kosovichev, A.G.: 2003, Helioseismic observation of the structure and dynamics of a rotating sunspot beneath the solar surface. Astrophys. J. 591, 446 – 453.  10.1086/375343. 2003ApJ...591..446Z. ADSCrossRefGoogle Scholar
  32. Zhao, J., Kosovichev, A.G.: 2004, Torsional oscillation, meridional flows, and vorticity inferred in the upper convection zone of the Sun by time-distance helioseismology. Astrophys. J. 603, 776 – 784.  10.1086/381489. 2004ApJ...603..776Z. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.National Solar ObservatoryTucsonUSA

Personalised recommendations