Solar Physics

, Volume 289, Issue 2, pp 657–673 | Cite as

Do Solar Coronal Holes Affect the Properties of Solar Energetic Particle Events?

  • S. W. KahlerEmail author
  • C. N. Arge
  • S. Akiyama
  • N. Gopalswamy
Solar Origins of Space Weather and Space Climate


The intensities and timescales of gradual solar energetic particle (SEP) events at 1 AU may depend not only on the characteristics of shocks driven by coronal mass ejections (CMEs), but also on large-scale coronal and interplanetary structures. It has long been suspected that the presence of coronal holes (CHs) near the CMEs or near the 1-AU magnetic footpoints may be an important factor in SEP events. We used a group of 41 E≈ 20 MeV SEP events with origins near the solar central meridian to search for such effects. First we investigated whether the presence of a CH directly between the sources of the CME and of the magnetic connection at 1 AU is an important factor. Then we searched for variations of the SEP events among different solar wind (SW) stream types: slow, fast, and transient. Finally, we considered the separations between CME sources and CH footpoint connections from 1 AU determined from four-day forecast maps based on Mount Wilson Observatory and the National Solar Observatory synoptic magnetic-field maps and the Wang–Sheeley–Arge model of SW propagation. The observed in-situ magnetic-field polarities and SW speeds at SEP event onsets tested the forecast accuracies employed to select the best SEP/CH connection events for that analysis. Within our limited sample and the three analytical treatments, we found no statistical evidence for an effect of CHs on SEP event peak intensities, onset times, or rise times. The only exception is a possible enhancement of SEP peak intensities in magnetic clouds.


Energetic particles – acceleration Magnetic fields – models Coronal mass ejections – low coronal signatures 



SWK was funded by AFOSR Task 2301RDZ4. NG and SA were supported by NASA’s LWS TR&T program. CME data were taken from the CDAW LASCO catalog. This CME catalog is generated and maintained at the CDAW Data Center by NASA and The Catholic University of America in cooperation with the Naval Research Laboratory. SOHO is a project of international cooperation between ESA and NASA. EIT images of Figure 1 were obtained from the EIT instrument webpage. We thank Ian Richardson for providing the SW stream listings and Don Reames for the use of the EPACT proton data. We used Wind data provided by J.H. King, N. Papatashvilli, and R. Lepping at the NASA/GSFC CDAW website.


  1. Arge, C.N., Pizzo, V.J.: 2000, Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J. Geophys. Res. 105, 10465 – 10480. doi: 10.1029/1999JA900262. ADSCrossRefGoogle Scholar
  2. Arge, C.N., Luhmann, J.G., Odstrcil, D., Schrijver, C.J., Li, Y.: 2004, Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME. J. Atmos. Solar-Terr. Phys. 66, 1295 – 1309. doi: 10.1016/j.jastp.2004.03.018. ADSCrossRefGoogle Scholar
  3. Bravo, S.: 1993, The SC event of 6 June 1979 and related solar and interplanetary observations. Adv. Space Res. 13, 371 – 374. doi: 10.1016/0273-1177(93)90508-9. ADSCrossRefGoogle Scholar
  4. Bravo, S.: 1995, A solar scenario for the associated occurrence of flares, eruptive prominences, coronal mass ejections, coronal holes, and interplanetary shocks. Solar Phys. 161, 57 – 65. doi: 10.1007/BF00732084. ADSCrossRefGoogle Scholar
  5. Cane, H.V., Lario, D.: 2006, An introduction to CMEs and energetic particles. Space Sci. Rev. 123, 45 – 56. doi: 10.1007/s11214-006-9011-3. ADSCrossRefGoogle Scholar
  6. Cane, H.V., Reames, D.V., von Rosenvinge, T.T.: 1988, The role of interplanetary shocks in the longitude distribution of solar energetic particles. J. Geophys. Res. 93, 9555 – 9567. doi: 10.1029/JA093iA09p09555. ADSCrossRefGoogle Scholar
  7. Cliver, E.W., Thompson, B.J., Lawrence, G.R., Zhukov, A.N., Tylka, A.J., Dietrich, W.F., Reames, D.V., Reiner, M.J., MacDowall, R.J., Kosovichev, A.G., Ling, A.G.: 2005, The solar energetic particle event of 16 August 2001: 400 MeV protons following an eruption at ≈ W180. In: Acharya, B.S., Gupta, S., Jagadeesan, P., Jain, A., Karthikeyan, S., Morris, S., Tonwar, S. (eds.) Proc. 29th Int. Cosmic Ray Conf. 1, Tata Inst. Fund. Res., 121 – 124. Google Scholar
  8. Dalla, S., Agueda, N.: 2010, Role of latitude of source region in solar energetic particle events. In: Maksimovic, M., Issautier, K., Meyer-Vernet, N., Moncuquet, M., Pantellini, F. (eds.) Proc. 12th Int. Solar Wind Conf. CP-1216, AIP, New York, 613 – 616. doi: 10.1063/1.3395941. Google Scholar
  9. Dalla, S., Balogh, A., Krucker, S., Posner, A., Müller-Mellin, R., Anglin, J.D., Hofer, M.Y., Marsden, R.G., Sanderson, T.R., Tranquille, C., Heber, B., Zhang, M., McKibben, R.B.: 2003, Properties of high heliolatitude solar energetic particle events and constraints on models of acceleration and propagation. Geophys. Res. Lett. 30, 8035. doi: 10.1029/2003GL017139. ULY 9-1. ADSCrossRefGoogle Scholar
  10. Ding, L., Jiang, Y., Zhao, L., Li, G.: 2013, The “twin-CME” scenario and large solar energetic particle events in solar cycle 23. Astrophys. J. 763, 30. doi: 10.1088/0004-637X/763/1/30. ADSCrossRefGoogle Scholar
  11. Gardini, A., Laurenza, M., Storini, M.: 2011, SEP events and multi-spacecraft observations: constraints on theory. Adv. Space Res. 47, 2127 – 2139. doi: 10.1016/j.asr.2011.01.025. ADSCrossRefGoogle Scholar
  12. Gloeckler, G.: 2003, Ubiquitous suprathermal tails on the solar wind and pickup ion distributions. In: Velli, M., Bruno, R., Malara, F. (eds.) Proc. 10th Int. Solar Wind Conf. CP-679, AIP, New York, 583 – 588. doi: 10.1063/1.1618663. Google Scholar
  13. Gopalswamy, N., Yashiro, S., Michalek, G., Kaiser, M.L., Howard, R.A., Leske, R., von Rosenvinge, T., Reames, D.V.: 2003, Effect of CME interactions on the production of solar energetic particles. In: Velli, M., Bruno, R., Malara, F. (eds.) Proc. 10th Int. Solar Wind Conf. CP-679, AIP, New York, 608 – 611. doi: 10.1063/1.1618668. Google Scholar
  14. Gopalswamy, N., Mäkelä, P., Xie, H., Akiyama, S., Yashiro, S.: 2009, CME interactions with coronal holes and their interplanetary consequences. J. Geophys. Res. 114, A00A22. doi: 10.1029/2008JA013686. ADSGoogle Scholar
  15. Gopalswamy, N., Mäkelä, P., Xie, H., Akiyama, S., Yashiro, S.: 2010, Solar sources of “driverless” interplanetary shocks. In: Maksimovic, M., et al. (eds.) Proc. Twelfth Int. Solar Wind Conf. CP-1216, 452 – 455. doi: 10.1063/1.3395902. Google Scholar
  16. Gopalswamy, N., Xie, H., Akiyama, S., Yashiro, S., Usoskin, I.G., Davilla, J.M.: 2013, The first ground level enhancement of solar cycle 24: direct observation of shock formation and particle release heights. Astrophys. J. 765, L30. doi: 10.1088/2041-8205/765/2/L30. ADSCrossRefGoogle Scholar
  17. Howard, R.A., Sheeley, N.R. Jr., Michels, D.J., Koomen, M.J.: 1985, Coronal mass ejections – 1979 – 1981. J. Geophys. Res. 90, 8173 – 8191. doi: 10.1029/JA090iA09p08173. ADSCrossRefGoogle Scholar
  18. Kahler, S.W.: 2004, Solar fast-wind regions as sources of shock energetic particle production. Astrophys. J. 603, 330 – 334. doi: 10.1086/381358. ADSCrossRefGoogle Scholar
  19. Kahler, S.W.: 2005, Characteristic times of gradual solar energetic particle events and their dependence on associated coronal mass ejection properties. Astrophys. J. 628, 1014 – 1022. doi: 10.1086/431194. ADSCrossRefGoogle Scholar
  20. Kahler, S.W.: 2008, Time scales of solar energetic particle events and solar wind stream types. In: Caballero, R., D’Olivo, J.C., Medina-Tanco, G., Nellen, L., Sánchez, F.A., Valdés-Galicia, J.F. (eds.) Proc. 30th Int. Cosmic Ray Conf. 1, Univ. Nac. Auto. de Mexico, Mexico, 143 – 146. Google Scholar
  21. Kahler, S.W.: 2013, A comparison of solar energetic particle event timescales with properties of associated coronal mass ejections. Astrophys. J. 769, 110. doi: 10.1088/0004-637X/769/2/110. ADSCrossRefGoogle Scholar
  22. Kahler, S.W., Akiyama, S., Gopalswamy, N.: 2012, Deflections of fast coronal mass ejections and the properties of associated solar energetic particle events. Astrophys. J. 754, 100. doi: 10.1088/0004-637X/754/2/100 (KAG). ADSCrossRefGoogle Scholar
  23. Kahler, S.W., Davis, J.M., Harvey, J.W.: 1983, Comparison of coronal holes observed in soft X-ray and He I 10 830 Å spectroheliograms. Solar Phys. 87, 47 – 56. doi: 10.1007/BF00151159. ADSCrossRefGoogle Scholar
  24. Kahler, S.W., Kunches, J., Smith, D.F.: 1995, Coronal and interplanetary magnetic sector structure and the modulation of solar energetic particle events. In: 24th Int. Cosmic Ray Conf. 4, 325 – 328. Google Scholar
  25. Kahler, S.W., Kunches, J.M., Smith, D.F.: 1996, Role of current sheets in the modulation of solar energetic particle events. J. Geophys. Res. 101, 24383 – 24392. doi: 10.1029/96JA02446. ADSCrossRefGoogle Scholar
  26. Kahler, S.W., Tylka, A.J., Reames, D.V.: 2009, A comparison of elemental abundance ratios in SEP events in fast and slow solar wind regions. Astrophys. J. 701, 561. doi: 10.1088/0004-637X/701/1/561. ADSCrossRefGoogle Scholar
  27. Kahler, S.W., Vourlidas, A.: 2005, Fast coronal mass ejection environments and the production of solar energetic particle events. J. Geophys. Res. 110, A12S01. doi: 10.1029/2005JA011073. ADSCrossRefGoogle Scholar
  28. Kahler, S.W., Cliver, E.W., Tylka, A.J., Dietrich, W.F.: 2011, A comparison of ground level event e/p and Fe/O ratios with associated solar flare and CME characteristics. Space Sci. Rev. 171, 121 – 139. doi: 10.1007/s11214-011-9768-x. ADSCrossRefGoogle Scholar
  29. Ko, Y.-K., Tylka, A.J., Ng, C.K., Wang, Y.-M.: 2012, On the relationship between heavy-ion composition variability in gradual SEP events and the associated IMF source regions. In: Hu, Q., Li, G., Zank, G.P., Ao, X., Verkhoglyadova, O., Adams, J.H. (eds.) Space Weather: The Space Radiation Environment 1500, AIP, New York, 26 – 31. doi: 10.1063/1.4768740. Google Scholar
  30. Kocharov, L., Laitinen, T., Al-Sawad, A., Saloniemi, O., Valtonen, E., Reiner, M.J.: 2009, Gradual solar energetic particle event associated with a decelerating shock wave. Astrophys. J. Lett. 700, L51 – L55. doi: 10.1088/0004-637X/700/1/L51. ADSCrossRefGoogle Scholar
  31. Kóta, J.: 2010, Particle acceleration at near-perpendicular shocks: the role of field-line topology. Astrophys. J. 723, 393 – 397. doi: 10.1088/0004-637X/723/1/393. ADSCrossRefGoogle Scholar
  32. Kunches, J.M., Zwickl, R.D.: 1999, The effects of coronal holes on the propagation of solar energetic protons. Radiat. Meas. 30, 281 – 286. CrossRefGoogle Scholar
  33. Lario, D., Decker, R.B., Malandraki, O.E., Lanzerotti, L.J.: 2008, Influence of large-scale interplanetary structures on energetic particle propagation: September 2004 event at Ulysses and ACE. J. Geophys. Res. 113, A03105. doi: 10.1029/2007JA012721. ADSCrossRefGoogle Scholar
  34. Luhmann, J.G., Lee, C.O., Li, Y., Arge, C.N., Galvin, A.B., Simunac, K., Russell, C.T., Howard, R.A., Petrie, G.: 2009, Solar wind sources in the late declining phase of cycle 23: effects of the weak solar polar field on high speed streams. Solar Phys. 256, 285 – 305. doi: 10.1007/s11207-009-9354-5. ADSCrossRefGoogle Scholar
  35. Mäkelä, P., Gopalswamy, N., Xie, H., Mohamed, A.A., Akiyama, S., Yashiro, S.: 2013, Coronal hole influence on the observed structure of interplanetary CMEs. Solar Phys. 284, 59 – 75. doi: 10.1007/s11207-012-0211-6. ADSCrossRefGoogle Scholar
  36. Malandraki, O.E., Marsden, R.G., Lario, D., Tranquille, C., Heber, B., Mewaldt, R.A., Cohen, C.M.S., Lanzerotti, L.J., Forsyth, R.J., Elliott, H.A., Vogiatzis, I.I., Geranios, A.: 2009, Energetic particle observations and propagation in the three-dimensional heliosphere during the 2006 December events. Astrophys. J. 704, 469 – 476. doi: 10.1088/0004-637X/704/1/469. ADSCrossRefGoogle Scholar
  37. Mohamed, A.A., Gopalswamy, N., Yashiro, N., Akiyama, S., Mäkelä, P., Xie, H., Jung, H.: 2012, The relation between coronal holes and coronal mass ejections during the rise, maximum, and declining phases of solar cycle 23. J. Geophys. Res. 117, A01103. doi: 10.1029/2011JA016589. ADSCrossRefGoogle Scholar
  38. Nitta, N.V., De Rosa, M.L.: 2008, A comparison of solar open field regions found by type III radio bursts and the potential field source surface model. Astrophys. J. Lett. 673, L207 – L210. doi: 10.1086/527548. ADSCrossRefGoogle Scholar
  39. Reames, D.V.: 2009, Solar energetic-particle release times in historic ground-level events. Astrophys. J. 706, 844 – 850. doi: 10.1088/0004-637X/706/1/844. ADSCrossRefGoogle Scholar
  40. Reames, D.V., Barbier, L.M., Ng, C.K.: 1996, The spatial distribution of particles accelerated by coronal mass ejection-driven shocks. Astrophys. J. 466, 473 – 486. doi: 10.1086/177525. ADSCrossRefGoogle Scholar
  41. Richardson, I.G., Cane, H.V.: 2005, A survey of interplanetary coronal mass ejections in the near-Earth solar wind during 1996 – 2005. In: Fleck, B., Zurbuchen, T.H., Lacoste, H. (eds.) Proc. Solar Wind 11/SOHO 16 Conf. SP-592, ESA, Noordwijk, 755 – 758. Google Scholar
  42. Richardson, I.G., Cane, H.V., Cliver, E.W.: 2002, Sources of geomagnetic activity during nearly three solar cycles (1972 – 2000). J. Geophys. Res. 107, SSH 8-1. doi: 10.1029/2001JA000504. Google Scholar
  43. Richardson, I.G., Cane, H.V., von Rosenvinge, T.T.: 1991, Prompt arrival of solar energetic particles from far eastern events – the role of large-scale interplanetary magnetic field structure. J. Geophys. Res. 96, 7853 – 7860. doi: 10.1029/91JA00379. ADSCrossRefGoogle Scholar
  44. Rodríguez-Gasén, R., Aran, A., Sanahuja, B., Jacobs, C., Poedts, S.: 2011, Why should the latitude of the observer be considered when modeling gradual proton events? An insight using the concept of cobpoint. Adv. Space Res. 47, 2140 – 2151.  10.1016/j.asr.2010.03.021. ADSCrossRefGoogle Scholar
  45. Rouillard, A.P., Odstrcil, D., Sheeley, N.R., Tylka, A., Vourlidas, A., Mason, G., Wu, C.-C., Savani, N.P., Wood, B.E., Ng, C.K., Stenborg, G., Szabo, A., St. Cyr, O.C.: 2011, Interpreting the properties of solar energetic particle events by using combined imaging and modeling of interplanetary shocks. Astrophys. J. 735, 7. doi: 10.1088/0004-637X/735/1/7. ADSCrossRefGoogle Scholar
  46. Rust, D.M., Haggerty, D.K., Georgoulis, M.K., Sheeley, N.R., Wang, Y.-M., De Rosa, M.L., Schrijver, C.J.: 2008, On the solar origins of open magnetic fields in the heliosphere. Astrophys. J. 687, 635 – 645. doi: 10.1086/592017. ADSCrossRefGoogle Scholar
  47. Shen, C., Wang, Y., Ye, P., Wang, S.: 2006, Is there any evident effect of coronal holes on gradual solar energetic particle events? Astrophys. J. 639, 510 – 515. doi: 10.1086/499199. ADSCrossRefGoogle Scholar
  48. Shen, C.-L., Yao, J., Wang, Y.-M., Ye, P.-Z., Zhao, X.-P., Wang, S.: 2010, Influence of coronal holes on CMEs in causing SEP events. Res. Astron. Astrophys. 10, 1049 – 1060. doi: 10.1088/1674-4527/10/10/008. ADSCrossRefGoogle Scholar
  49. Smart, W.M.: 1977, Textbook on Spherical Astronomy, Cambridge Univ. Press, Cambridge. Google Scholar
  50. Tan, L.C., Reames, D.V., Ng, C.K., Saloniemi, O., Wang, L.: 2009, Observational evidence on the presence of an outer reflecting boundary in solar energetic particle events. Astrophys. J. 701, 1753 – 1764. doi: 10.1088/0004-637X/701/2/1753. ADSCrossRefGoogle Scholar
  51. van Hollebeke, M.A.I., Ma Sung, L.S., McDonald, F.B.: 1975, The variation of solar proton energy spectra and size distribution with heliolongitude. Solar Phys. 41, 189 – 223. doi: 10.1007/BF00152967. ADSCrossRefGoogle Scholar
  52. von Rosenvinge, T.T., Reames, D.V.: 1983, The delayed energetic particle event of June 6 – 10, 1979. In: Durgaprasad, N., Ramadurai, S., Ramana Murthy, P.V., Rao, M.V.S., Sivaprasad, K. (eds.) 18th Int. Cosmic Ray Conf. 10, Tata Inst. Fund. Res., 373 – 376. Google Scholar
  53. Wang, Y.-M., Robbrecht, E., Rouillard, A.P., Sheeley, N.R. Jr., Thernisien, A.F.R.: 2010, Formation and evolution of coronal holes following the emergence of active regions. Astrophys. J. 715, 39 – 50. doi: 10.1088/0004-637X/715/1/39. ADSCrossRefGoogle Scholar
  54. Wood, B.E., Wu, C.-C., Rouillard, A.P., Howard, R.A., Socker, D.G.: 2012, A coronal hole’s effects on coronal mass ejection shock morphology in the inner heliosphere. Astrophys. J. 755, 43. doi: 10.1088/0004-637X/755/1/43. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht (outside the USA) 2013

Authors and Affiliations

  • S. W. Kahler
    • 1
    Email author
  • C. N. Arge
    • 1
  • S. Akiyama
    • 2
  • N. Gopalswamy
    • 3
  1. 1.Air Force Research LaboratorySpace Vehicles DirectorateKirtland AFBUSA
  2. 2.The Catholic University of AmericaWashingtonUSA
  3. 3.NASA Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations