Solar Physics

, Volume 289, Issue 4, pp 1193–1202 | Cite as

Linear MHD Wave Propagation in Time-Dependent Flux Tube

II. Finite Plasma Beta


The propagation of magnetohydrodynamic (MHD) waves is an area that has been thoroughly studied for idealised static and steady state magnetised plasma systems applied to numerous solar structures. By applying the generalisation of a temporally varying background density to an open magnetic flux tube, mimicking the observed slow evolution of such waveguides in the solar atmosphere, further investigations into the propagation of both fast and slow MHD waves can take place. The assumption of a zero-beta plasma (no gas pressure) was applied in Williamson and Erdélyi (Solar Phys. 2013, doi:  10.1007/s11207-013-0366-9 , Paper I) is now relaxed for further analysis here. Firstly, the introduction of a finite thermal pressure to the magnetic flux tube equilibrium modifies the existence of fast MHD waves which are directly comparable to their counterparts found in Paper I. Further, as a direct consequence of the non-zero kinetic plasma pressure, a slow MHD wave now exists, and is investigated. Analysis of the slow wave shows that, similar to the fast MHD wave, wave amplitude amplification takes place in time and height. The evolution of the wave amplitude is determined here analytically. We conclude that for a temporally slowly decreasing background density both propagating magnetosonic wave modes are amplified for over-dense magnetic flux tubes. This information can be very practical and useful for future solar magneto-seismology applications in the study of the amplitude and frequency properties of MHD waveguides, e.g. for diagnostic purposes, present in the solar atmosphere.


MHD Time-dependent density Waves 



The authors would like to thank STFC for their support and M.S. Ruderman for a number of discussions. RE acknowledges M. Kéray for patient encouragement and is also grateful to NSF, Hungary (OTKA, Ref. No. K83133).


  1. Andries, J., Arregui, I., Goossens, M.: 2005, Determination of the coronal density stratification from the observation of harmonic coronal loop oscillations. Astrophys. J. Lett. 624, L57 – L60. ADSCrossRefGoogle Scholar
  2. Andries, J., van Doorsselaere, T., Roberts, B., Verth, G., Verwichte, E., Erdélyi, R.: 2009, Coronal seismology by means of kink oscillation overtones. Space Sci. Rev. 149, 3 – 29. ADSCrossRefGoogle Scholar
  3. Aschwanden, M.J.: 2004, Physics of the Solar Corona. An Introduction, Praxis Publishing Ltd, Chichester, 28 – 30. Google Scholar
  4. Aschwanden, M.J., Terradas, J.: 2008, The effect of radiative cooling on coronal loop oscillations. Astrophys. J. Lett. 686, L127 – L130. ADSCrossRefGoogle Scholar
  5. Bender, C.M., Orszag, S.A.: 1978, Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill, New York, 484. MATHGoogle Scholar
  6. De Moortel, I.: 2009, Longitudinal waves in coronal loops. Space Sci. Rev. 149, 65 – 81. ADSCrossRefGoogle Scholar
  7. Edwin, P.M., Roberts, B.: 1983, Wave propagation in a magnetic cylinder. Solar Phys. 88, 179 – 191. ADSGoogle Scholar
  8. Erdélyi, R., Al-Ghafri, K.S., Morton, R.J.: 2011, Damping of longitudinal magneto–acoustic oscillations in slowly varying coronal plasma. Solar Phys. 272, 73 – 89. ADSCrossRefGoogle Scholar
  9. Erdélyi, R., Fedun, V.: 2010, Magneto-acoustic waves in compressible magnetically twisted flux tubes. Solar Phys. 263, 63 – 85. ADSCrossRefGoogle Scholar
  10. Goossens, M., Erdélyi, R., Ruderman, M.S.: 2011, Resonant MHD waves in the solar atmosphere. Space Sci. Rev. 158, 289 – 338. ADSCrossRefGoogle Scholar
  11. Goossens, M., Soler, R., Arregui, I., Terradas, J.: 2012, Analytic approximate seismology of propagating magnetohydrodynamic waves in the solar corona. Astrophys. J. 760, 98. ADSCrossRefGoogle Scholar
  12. Heyvaerts, J., Priest, E.R.: 1983, Coronal heating by phase-mixed shear Alfvén waves. Astron. Astrophys. 117, 220 – 234. ADSMATHGoogle Scholar
  13. López Fuentes, M.C., Klimchuk, J.A., Mandrini, C.H.: 2007, The temporal evolution of coronal loops observed by GOES SXI. Astrophys. J. 657, 1127 – 1136. ADSCrossRefGoogle Scholar
  14. Mathioudakis, M., Jess, D.B., Erdélyi, R.: 2013, Alfvén waves in the solar atmosphere. Space Sci. Rev. 175, 1 – 27. ADSCrossRefGoogle Scholar
  15. Morton, R.J., Hood, A.W., Erdélyi, R.: 2010, Propagating magneto-hydrodynamic waves in a cooling homogeneous coronal plasma. Astron. Astrophys. 512. Google Scholar
  16. Roberts, B.: 1981, Wave propagation in a magnetically structured atmosphere I. Solar Phys. 69, 27 – 38. ADSCrossRefGoogle Scholar
  17. Roberts, B.: 2006, Slow magnetohydrodynamic waves in the solar atmosphere. Phil. Trans. Roy. Soc. London A 364, 447 – 460. ADSCrossRefGoogle Scholar
  18. Ruderman, M., Erdélyi, R.: 2009, Transverse oscillations of coronal loops. Space Sci. Rev. 149, 199 – 228. ADSCrossRefGoogle Scholar
  19. Ruderman, M.S., Verth, G., Erdélyi, R.: 2008, Transverse oscillations of longitudinally stratified coronal loops with variable cross section. Astrophys. J. 686, 694 – 700. ADSCrossRefGoogle Scholar
  20. van Doorsselaere, T., Arregui, I., Andries, J., Goossens, M., Poedts, S.: 2005, Dynamics of coronal loop oscillations – Recent improvements and computational aspects. Space Sci. Rev. 121, 79 – 89. ADSCrossRefGoogle Scholar
  21. Wang, T.: 2011, Standing slow-mode waves in hot coronal loops: observations, modeling, and coronal seismology. Space Sci. Rev. 158, 397 – 419. ADSCrossRefGoogle Scholar
  22. Warren, H.P., Winebarger, A.R.: 2003, Density and temperature measurements in a solar active region. Astrophys. J. Lett. 596, L113 – L116. ADSCrossRefGoogle Scholar
  23. Williamson, A., Erdélyi, R.: 2013, MHD wave propagation in a time-dependent flux tube I. Solar Phys. doi: 10.1007/s11207-013-0366-9.

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Solar Physics and Space Plasma Research Centre (SP2RC), School of MathematicsUniversity of SheffieldSheffieldUK

Personalised recommendations