Advertisement

Solar Physics

, Volume 289, Issue 3, pp 1043–1076 | Cite as

Picard SODISM, a Space Telescope to Study the Sun from the Middle Ultraviolet to the Near Infrared

  • M. Meftah
  • J.-F. Hochedez
  • A. Irbah
  • A. Hauchecorne
  • P. Boumier
  • T. Corbard
  • S. Turck-Chièze
  • S. Abbaki
  • P. Assus
  • E. Bertran
  • P. Bourget
  • F. Buisson
  • M. Chaigneau
  • L. Damé
  • D. Djafer
  • C. Dufour
  • P. Etcheto
  • P. Ferrero
  • M. Hersé
  • J.-P. Marcovici
  • M. Meissonnier
  • F. Morand
  • G. Poiet
  • J.-Y. Prado
  • C. Renaud
  • N. Rouanet
  • M. Rouzé
  • D. Salabert
  • A.-J. Vieau
Article

Abstract

The Solar Diameter Imager and Surface Mapper (SODISM) onboard the Picard space mission provides wide-field images of the photosphere and chromosphere of the Sun in five narrow bandpasses centered at 215.0, 393.37, 535.7, 607.1, and 782.2 nm. The Picard spacecraft was successfully launched on 15 June 2010 into a Sun-synchronous dawn–dusk orbit. The Picard space mission represents a European asset in collecting solar observations useful to improve Earth climatic models. The scientific payload consists of the SODISM imager and of two radiometers, SOlar VAriability Picard (SOVAP) and PREcision MOnitor Sensor (PREMOS), which measure the Total Solar Irradiance (TSI) and part of the Solar Spectral Irradiance (SSI).

The SODISM telescope continuously monitors solar activity from the middle ultraviolet to the near infrared spectral ranges and produces solar images that feed SSI reconstruction models. Further, SODISM probes the solar interior via a helioseismic analysis of the solar disc and limb images at 535.7 nm, and via astrometric investigations at the limb. The latter allows us to deduce the spectral dependence of the solar limb profile, and the asphericity of the Sun. Furthermore, SODISM data taken during the transit of Venus allow a determination of the absolute value of the solar diameter. This paper provides a detailed description of the SODISM instrument, including thermo-optical analysis, its different modes of observation, and its first performance in space.

Keywords

Instrumentation and data management Instrumental effects Solar cycle observations Helioseismology observations Center-limb observations Solar diameter Eclipse observations Atmospheric extinction 

Notes

Acknowledgements

Picard is a mission supported by the CNES, the CNRS/INSU, the Belgian Space Policy (BELSPO), the Swiss Space Office (SSO), and the European Space Agency (ESA). The SODISM instrument has been built by CNRS – LATMOS. We thank CNES, CNRS, and CEA for their support as well as all participants providing their expertise to this project. We wish to express our gratitude to the members of the calibration facility station of IAS (France) who participated in the preparation of this mission, and the help of the LESIA laboratory (France). Numerous individuals have been involved in this project. The authors thank the referee and the Editor in Chief for the constructive remarks and suggestions.

References

  1. Appourchaux, T., Toutain, T.: 1998, Sounding solar and stellar interiors. In: Provost, J., Schmider, F.-X. (eds.) IAU Symp. 181, Poster volume, 5. Kluwer Academic Publishers, Dordrecht. Google Scholar
  2. Assus, P., Irbah, A., Bourget, P., Corbard, T., PICARD Team: 2008, Monitoring the scale factor of the PICARD SODISM instrument. Astron. Nachr. 329, 517. doi: 10.1002/asna.200710987. ADSCrossRefGoogle Scholar
  3. Badache-Damiani, C., Rozelot, J.P., Coughlin, K., Kilifarska, N.: 2007, Influence of the UTLS region on the astrolabes solar signal measurement. Mon. Not. Roy. Astron. Soc. 380, 609 – 614. doi: 10.1111/j.1365-2966.2007.12079.x. ADSCrossRefGoogle Scholar
  4. Bertello, L., Ulrich, R.K., Boyden, J.E.: 2010, The Mount Wilson Ca ii K plage index time series. Solar Phys. 264, 31 – 44. doi: 10.1007/s11207-010-9570-z. ADSCrossRefGoogle Scholar
  5. Brown, T.M., Christensen-Dalsgaard, J.: 1998, Accurate determination of the solar photospheric radius. Astrophys. J. Lett. 500, L195. doi: 10.1086/311416. ADSCrossRefGoogle Scholar
  6. Conscience, C., Meftah, M., Chevalier, A., Dewitte, S., Crommelynck, D.: 2011, The space instrument SOVAP of the PICARD mission. In: SPIE CS-8146. doi: 10.1117/12.895447. Google Scholar
  7. Corbard, T., Boumier, P., Appourchaux, T., Jiménez-Reyes, S.J., Gelly, B., PICARD Team: 2008, Helioseismology program for the PICARD satellite. Astron. Nachr. 329, 508 – 516. doi: 10.1002/asna.200710986. ADSCrossRefGoogle Scholar
  8. Corbard, T., Salabert, D., Boumier, P., Appourchaux, T., Hauchecorne, A., Journoud, P., Nunge, A., Gelly, B., Hochedez, J.F., Irbah, A., Meftah, M., Renaud, C., Turck-Chièze, S.: 2013, Helioseismology with Picard. J. Phys. CS-440. doi: 10.1088/1742-6596/440/1/012025.
  9. Coulter, R.L., Kuhn, J.R., Lin, H.: 1996, The precision solar photometric telescopes. In: AAS Meeting Abstracts #188, Bull. Am. Astron. Soc. 28, 912. Google Scholar
  10. Couvidat, S., Schou, J., Shine, R.A., Bush, R.I., Miles, J.W., Scherrer, P.H., Rairden, R.L.: 2012, Wavelength dependence of the helioseismic and magnetic imager (HMI) instrument onboard the solar dynamics observatory (SDO). Solar Phys. 275, 285 – 325. doi: 10.1007/s11207-011-9723-8. ADSCrossRefGoogle Scholar
  11. Crane, P.C., Floyd, L.E., Cook, J.W., Herring, L.C., Avrett, E.H., Prinz, D.K.: 2004, The center-to-limb behavior of solar active regions at ultraviolet wavelengths. Astron. Astrophys. 419, 735 – 746. doi: 10.1051/0004-6361:20040012. ADSCrossRefGoogle Scholar
  12. Damé, L., Hersé, M., Thuillier, G., Appourchaux, T., Crommelynck, D., Dewitte, S., Joukoff, A., Fröhlich, C., Laclare, F., Delmas, C., Boumier, P.: 1999, PICARD: simultaneous measurements of the solar diameter, differential rotation, solar constant and their variations. Adv. Space Res. 24, 205 – 214. doi: 10.1016/S0273-1177(99)00502-5. ADSCrossRefGoogle Scholar
  13. Delache, P., Kroll, R.J.: 1994, Panel discussion on Solar diameter variations. In: Nesme-Ribes, E. (ed.) The Solar Engine and Its Influence on Terrestrial Atmosphere and Climate, 193. CrossRefGoogle Scholar
  14. Delache, P., Gavriusev, V., Gavriuseva, E., Laclare, F., Regulo, C., Roca Cortes, T.: 1993, Time correlation between solar structural parameters – p-mode frequencies, radius, and neutrino flux. Astrophys. J. 407, 801 – 805. doi: 10.1086/172561. ADSCrossRefGoogle Scholar
  15. Djafer, D., Irbah, A., Meftah, M.: 2012, Identification of sunspots on full-disk solar images using wavelet analysis. Solar Phys. 281, 863 – 875. doi: 10.1007/s11207-012-0109-3. ADSCrossRefGoogle Scholar
  16. Egidi, A., Caccin, B., Sofia, S., Heaps, W., Hoegy, W., Twigg, L.: 2006, High-precision measurements of the solar diameter and oblateness by the solar disk sextant (SDS) experiment. Solar Phys. 235, 407 – 418. doi: 10.1007/s11207-006-0073-x. ADSCrossRefGoogle Scholar
  17. Ermolli, I., Solanki, S.K., Tlatov, A.G., Krivova, N.A., Ulrich, R.K., Singh, J.: 2009, Comparison among Ca II K spectroheliogram time series with an application to solar activity studies. Astrophys. J. 698, 1000 – 1009. doi: 10.1088/0004-637X/698/2/1000. ADSCrossRefGoogle Scholar
  18. Ermolli, I., Criscuoli, S., Uitenbroek, H., Giorgi, F., Rast, M.P., Solanki, S.K.: 2010, Radiative emission of solar features in the Ca II K line: comparison of measurements and models. Astron. Astrophys. 523, A55. doi: 10.1051/0004-6361/201014762. ADSCrossRefGoogle Scholar
  19. Ermolli, I., Matthes, K., Dudok de Wit, T., Krivova, N.A., Tourpali, K., Weber, M., Unruh, Y.C., Gray, L., Langematz, U., Pilewskie, P., Rozanov, E., Schmutz, W., Shapiro, A., Solanki, S.K., Thuillier, G., Woods, T.N.: 2012, Recent variability of the solar spectral irradiance and its impact on climate modelling. Atmos. Chem. Phys. Discuss. 12, 24557 – 24642. doi: 10.5194/acpd-12-24557-2012. ADSCrossRefGoogle Scholar
  20. Etcheto, P., Meftah, M., Meissonnier, M., Irbah, A., Assus, P., Thuillier, G.: 2011, Stray light in PICARD SODISM instrument: design, check, flight results, and alignment issues. In: SPIE CS-8131. doi: 10.1117/12.896434. http://hal.archives-ouvertes.fr/hal-00640473. Google Scholar
  21. Fontenla, J.M., Harder, J., Livingston, W., Snow, M., Woods, T.: 2011, High-resolution solar spectral irradiance from extreme ultraviolet to far infrared. J. Geophys. Res. 116, 20108. doi: 10.1029/2011JD016032. CrossRefGoogle Scholar
  22. Fröhlich, C., Romero, J., Roth, H., Wehrli, C., Andersen, B.N., Appourchaux, T., Domingo, V., Telljohann, U., Berthomieu, G., Delache, P., Provost, J., Toutain, T., Crommelynck, D.A., Chevalier, A., Fichot, A., Däppen, W., Gough, D., Hoeksema, T., Jiménez, A., Gómez, M.F., Herreros, J.M., Cortés, T.R., Jones, A.R., Pap, J.M., Willson, R.C.: 1995, VIRGO: experiment for helioseismology and solar irradiance monitoring. Solar Phys. 162, 101 – 128. doi: 10.1007/BF00733428. ADSCrossRefGoogle Scholar
  23. Gandorfer, A., Grauf, B., Barthol, P., Riethmüller, T.L., Solanki, S.K., Chares, B., Deutsch, W., Ebert, S., Feller, A., Germerott, D., Heerlein, K., Heinrichs, J., Hirche, D., Hirzberger, J., Kolleck, M., Meller, R., Müller, R., Schäfer, R., Tomasch, G., Knölker, M., Martínez Pillet, V., Bonet, J.A., Schmidt, W., Berkefeld, T., Feger, B., Heidecke, F., Soltau, D., Tischenberg, A., Fischer, A., Title, A., Anwand, H., Schmidt, E.: 2011, The filter imager SuFI and the image stabilization and light distribution system ISLiD of the Sunrise Balloon-Borne observatory: instrument description. Solar Phys. 268, 35 – 55. doi: 10.1007/s11207-010-9636-y. ADSCrossRefGoogle Scholar
  24. Gilliland, R.L.: 1982, Modeling solar variability. Astrophys. J. 253, 399 – 405. doi: 10.1086/159644. ADSCrossRefGoogle Scholar
  25. Haberreiter, M., Schmutz, W., Hubeny, I.: 2008, NLTE model calculations for the solar atmosphere with an iterative treatment of opacity distribution functions. Astron. Astrophys. 492, 833 – 840. doi: 10.1051/0004-6361:200809503. ADSCrossRefGoogle Scholar
  26. Hestroffer, D., Magnan, C.: 1998, Wavelength dependency of the solar limb darkening. Astron. Astrophys. 333, 338 – 342. ADSGoogle Scholar
  27. Irbah, A., Dufour, C., Meftah, M., Meissonnier, M., Thuillier, G., Assus, P., Corbard, T., Pradels, G.: 2010, Solar radius measurements with the SODISM instrument: methods and algorithm developments for the PICARD payload data center. Astron. Nachr. 331(9–10), 59. http://hal.archives-ouvertes.fr/hal-00565373. Google Scholar
  28. Irbah, A., Meftah, M., Corbard, T., Ikhlef, R., Morand, F., Assus, P., Fodil, M., Lin, M., Ducourt, E., Lesueur, P., Poiet, G., Renaud, C.: 2011, Ground-based solar astrometric measurements during the PICARD mission. In: SPIE CS-8178. doi: 10.1117/12.898301. Google Scholar
  29. Irbah, A., Meftah, M., Hauchecorne, A., Cisse, E.h.M., Lin, M., Rouzé, M.: 2012, How Earth atmospheric radiations may affect astronomical observations from low-orbit satellites. In: SPIE CS-8442. doi: 10.1117/12.925747. Google Scholar
  30. Kuhn, J.R., Lin, H., Loranz, D.: 1991, Gain calibrating nonuniform image-array data using only the image data. Publ. Astron. Soc. Pac. 103, 1097 – 1108. doi: 10.1086/132932. ADSCrossRefGoogle Scholar
  31. Laclare, F., Delmas, C., Coin, J.P., Irbah, A.: 1996, Measurements and variations of the solar diameter. Solar Phys. 166, 211 – 229. doi: 10.1007/BF00149396. ADSCrossRefGoogle Scholar
  32. Langevin, Y., Forni, O.: 2000, Image and spectral image compression for four experiments on the ROSETTA and Mars Express missions of ESA. In: SPIE CS-4115, 364 – 373. Google Scholar
  33. Lapeyrere, V., Bernardi, P., Buey, J.-T., Auvergne, M., Tiphène, D.: 2006, Calibration of flight model CCDs for CoRoT mission. Mon. Not. Roy. Astron. Soc. 365, 1171 – 1179. doi: 10.1111/j.1365-2966.2005.09793.x. ADSCrossRefGoogle Scholar
  34. Lefebvre, S., Nghiem, P.A.P., Turck-Chièze, S.: 2009, Impact of a radius and composition variation on stratification of the solar subsurface layers. Astrophys. J. 690, 1272 – 1279. doi: 10.1088/0004-637X/690/2/1272. ADSCrossRefGoogle Scholar
  35. Lefebvre, S., Rozelot, J.P., Pireaux, S., Ajabshirizadeh, A., Fazel, Z.: 2005, Global properties of Sun and stars: what can we learn from irradiance and shape? Mem. Soc. Astron. Ital. 76, 994. ADSGoogle Scholar
  36. Meftah, M., Lee, S., Irbah, A., Ostergren, S.: 2011, Carbon/carbon for satellite applications. In: SPIE CS-8044. doi: 10.1117/12.878952. Google Scholar
  37. Meftah, M., Irbah, A., Corbard, T., Morand, F., Thuillier, G., Hauchecorne, A., Ikhlef, R., Rouze, M., Renaud, C., Djafer, D., Abbaki, S., Assus, P., Chauvineau, B., Cissé, E.M., Dalaudier, F., D’Almeida, E., Fodil, M., Laclare, F., Lesueur, P., Lin, M., Marcovici, J.P., Poiet, G.: 2012, PICARD SOL mission, a ground-based facility for long-term solar radius measurement. In: SPIE CS-8446. doi: 10.1117/12.925712. Google Scholar
  38. Meftah, M., Corbard, T., Irbah, A., Morand, F., Ikhlef, R., Renaud, C., Hauchecorne, A., Assus, P., Chauvineau, B., Crepel, M., Dalaudier, F., Djafer, D., Fodil, M., Laclare, F., Lesueur, P., Lin, M., Poiet, G.: 2013a, Picard sol, a new ground-based facility for long-term solar radius measurements: first results. J. Phys. CS-440. http://stacks.iop.org/1742-6596/440/i=1/a=012003.
  39. Meftah, M., Hauchecorne, A., Crepel, M., Irbah, A., Corbard, T., Djafer, D., Hochedez, J.-F.: 2013b, The plate scale of the SODISM instrument and the determination of the solar radius at 607.1 nm. Solar Phys., in press. doi: 10.1007/s11207-013-0347-z.
  40. Meunier, N., Roudier, T., Rieutord, M.: 2008, Supergranules over the solar cycle. Astron. Astrophys. 488, 1109 – 1115. doi: 10.1051/0004-6361:20078835. ADSCrossRefGoogle Scholar
  41. Penn, M.J., MacDonald, R.K.D.: 2007, Solar cycle changes in sunspot umbral intensity. Astrophys. J. Lett. 662, L123 – L126. doi: 10.1086/519558. ADSCrossRefGoogle Scholar
  42. Pradels, G., Baroukh, J., Queyrut, O., Sellé, A., Malapert, J.-C.: 2012, CNES solution for a reusable payload ground segment. Acta Astronaut. 81, 610 – 622. doi: 10.1016/j.actaastro.2012.08.036. ADSCrossRefGoogle Scholar
  43. Rast, M.P., Ortiz, A., Meisner, R.W.: 2008, Latitudinal variation of the solar photospheric intensity. Astrophys. J. 673, 1209 – 1217. doi: 10.1086/524655. ADSCrossRefGoogle Scholar
  44. Ribes, E., Beardsley, B., Brown, T.M., Delache, P., Laclare, F., Kuhn, J.R., Leister, N.V.: 1991, The variability of the solar diameter. In: Sonett, C.P., Giampapa, M.S., Matthews, M.S. (eds.) The Sun in Time, 59 – 97. Google Scholar
  45. Rozanov, E., Shapiro, A.V., Harder, J.W., Egorova, T.A., Schmutz, W.K., Peter, T.: 2011, The stratospheric ozone response to a discrepancy of the SSI data. AGU Fall Meeting Abstracts, A919. Google Scholar
  46. Said, A., Pearlman, W.A.: 1996, An image multiresolution representation for lossless and lossy compression. IEEE Trans. Image Process. 5, 1303 – 1310. doi: 10.1109/83.535842. ADSCrossRefGoogle Scholar
  47. Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The helioseismic and magnetic imager (HMI) investigation for the solar dynamics observatory (SDO). Solar Phys. 275, 207 – 227. doi: 10.1007/s11207-011-9834-2. ADSCrossRefGoogle Scholar
  48. Schmutz, W., Fehlmann, A., Hülsen, G., Meindl, P., Winkler, R., Thuillier, G., Blattner, P., Buisson, F., Egorova, T., Finsterle, W., Fox, N., Gröbner, J., Hochedez, J.-F., Koller, S., Meftah, M., Meisonnier, M., Nyeki, S., Pfiffner, D., Roth, H., Rozanov, E., Spescha, M., Wehrli, C., Werner, L., Wyss, J.U.: 2009, The PREMOS/PICARD instrument calibration. Metrologia 46, 202. doi: 10.1088/0026-1394/46/4/S13. ADSCrossRefGoogle Scholar
  49. Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A., Tomczyk, S.: 2012, Design and ground calibration of the helioseismic and magnetic imager (HMI) instrument on the solar dynamics observatory (SDO). Solar Phys. 275, 229 – 259. doi: 10.1007/s11207-011-9842-2. ADSCrossRefGoogle Scholar
  50. Shapiro, A.I., Schmutz, W., Schoell, M., Haberreiter, M., Rozanov, E.: 2010, NLTE solar irradiance modeling with the COSI code. Astron. Astrophys. 517, A48. doi: 10.1051/0004-6361/200913987. ADSCrossRefGoogle Scholar
  51. Sheeley, N.R. Jr., Cooper, T.J., Anderson, J.R.L.: 2011, Carrington maps of Ca II K-line emission for the years 1915 – 1985. Astrophys. J. 730, 51. doi: 10.1088/0004-637X/730/1/51. ADSCrossRefGoogle Scholar
  52. Sofia, S., Li, L.H.: 2005, Mechanisms for global solar variability. Mem. Soc. Astron. Ital. 76, 768. ADSGoogle Scholar
  53. Sofia, S., Chiu, H.-Y., Maier, E., Schatten, K.H., Minott, P., Endal, A.S.: 1984, Solar disk sextant. Appl. Opt. 23, 1235 – 1237. doi: 10.1364/AO.23.001235. ADSCrossRefGoogle Scholar
  54. Steiner, O., Ferriz-Mas, A.: 2005, Connecting solar radiance variability to the solar dynamo with the virial theorem. Astron. Nachr. 326, 190 – 193. doi: 10.1002/asna.200410375. ADSCrossRefMATHGoogle Scholar
  55. Stothers, R.B.: 2006, A virial theorem investigation of magnetic variations in the Sun. Astrophys. J. Lett. 653, L73 – L75. doi: 10.1086/510406. ADSCrossRefGoogle Scholar
  56. Thuillier, G., Dewitte, S., Schmutz, W.: 2006, Simultaneous measurement of the total solar irradiance and solar diameter by the PICARD mission. Adv. Space Res. 38(8), 1792 – 1806. doi: 10.1016/j.asr.2006.04.034. ADSCrossRefGoogle Scholar
  57. Thuillier, G., Hersé, M., Labs, D., Foujols, T., Peetermans, W., Gillotay, D., Simon, P.C., Mandel, H.: 2003, The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the Atlas and Eureca missions. Solar Phys. 214, 1 – 22. ADSCrossRefGoogle Scholar
  58. Toner, C.G., Jefferies, S.M., Toutain, T.: 1999, Increasing the visibility of solar oscillations. Astrophys. J. Lett. 518, L127 – L130. doi: 10.1086/312076. ADSCrossRefGoogle Scholar
  59. Toutain, T., Berthomieu, G., Provost, J.: 1999, Light perturbation from stellar nonradial oscillations: an application to solar oscillations. Astron. Astrophys. 344, 188 – 198. ADSGoogle Scholar
  60. Turck-Chièze, S., Lambert, P.: 2007, Understanding the origin of the solar cyclic activity for an improved Earth climate prediction. Adv. Space Res. 40, 907 – 914. doi: 10.1016/j.asr.2007.01.090. ADSCrossRefGoogle Scholar
  61. Veselovsky, I.S., Koutchmy, S.: 2009, Scientific requirements for future spatially resolved white-light and broad-band high-cadence observations of the Sun. Adv. Space Res. 43(6), 995 – 1000. doi: 10.1016/j.asr.2008.10.020. http://www.sciencedirect.com/science/article/pii/S0273117708005656. ADSCrossRefGoogle Scholar
  62. Wesolowski, M.J., Walton, S.R., Chapman, G.A.: 2008, The behavior of sunspot contrast during cycle 23. Solar Phys. 248, 141 – 154. doi: 10.1007/s11207-008-9123-x. ADSCrossRefGoogle Scholar
  63. Wilson, R.: 2007, Reflecting Telescope Optics I: Basic Design Theory and Its Historical Development, Springer, Berlin. ISBN 3540765816. Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • M. Meftah
    • 1
  • J.-F. Hochedez
    • 1
    • 7
  • A. Irbah
    • 1
  • A. Hauchecorne
    • 1
  • P. Boumier
    • 2
  • T. Corbard
    • 3
  • S. Turck-Chièze
    • 4
  • S. Abbaki
    • 1
  • P. Assus
    • 3
  • E. Bertran
    • 1
  • P. Bourget
    • 8
  • F. Buisson
    • 5
  • M. Chaigneau
    • 2
  • L. Damé
    • 1
  • D. Djafer
    • 6
  • C. Dufour
    • 1
  • P. Etcheto
    • 5
  • P. Ferrero
    • 1
  • M. Hersé
    • 1
  • J.-P. Marcovici
    • 1
  • M. Meissonnier
    • 1
  • F. Morand
    • 3
  • G. Poiet
    • 1
  • J.-Y. Prado
    • 5
  • C. Renaud
    • 3
  • N. Rouanet
    • 1
  • M. Rouzé
    • 5
  • D. Salabert
    • 3
  • A.-J. Vieau
    • 1
  1. 1.LATMOS – Laboratoire Atmosphères, MilieuxObservations Spatiales, CNRS – Université Paris VI & Université de Versailles Saint-Quentin-en-Yvelines – IPSLGuyancourtFrance
  2. 2.IAS – Institut d’Astrophysique SpatialeCNRS – Université Paris XIOrsayFrance
  3. 3.OCA – Observatoire de la Côte d’Azur, Laboratoire LagrangeUniversité de Nice-Sophia Antipolis, CNRSNice Cedex 2France
  4. 4.IRFUCEA-SaclayGif-sur-Yvette CedexFrance
  5. 5.CNES – Centre National d’Etudes SpatialesToulouseFrance
  6. 6.Unité de Recherche Appliquée en Energies Renouvelables URAER/CDERGhardaïaAlgeria
  7. 7.ORB – Observatoire Royal de BelgiqueBruxelles (Uccle)Belgique
  8. 8.ESO – European Southern ObservatorySantiagoChile

Personalised recommendations