Advertisement

Solar Physics

, Volume 289, Issue 3, pp 831–845 | Cite as

A Comparison Between Nonlinear Force-Free Field and Potential Field Models Using Full-Disk SDO/HMI Magnetogram

  • Tilaye TadesseEmail author
  • T. Wiegelmann
  • P. J. MacNeice
  • B. Inhester
  • K. Olson
  • A. Pevtsov
Article

Abstract

Measurements of magnetic fields and electric currents in the pre-eruptive corona are crucial to the study of solar eruptive phenomena, like flares and coronal mass ejections (CMEs). However, spectro-polarimetric measurements of certain photospheric lines permit a determination of the vector magnetic field only at the photosphere. Therefore, there is considerable interest in accurate modeling of the solar coronal magnetic field using photospheric vector magnetograms as boundary data. In this work, we model the coronal magnetic field above multiple active regions with the help of a potential field and a nonlinear force-free field (NLFFF) extrapolation code over the full solar disk using Helioseismic and Magnetic Imager (SDO/HMI) data as boundary conditions. We compare projections of the resulting magnetic field lines with full-disk coronal images from the Atmospheric Imaging Assembly (SDO/AIA) for both models. This study has found that the NLFFF model reconstructs the magnetic configuration closer to observation than the potential field model for full-disk magnetic field extrapolation. We conclude that many of the trans-equatorial loops connecting the two solar hemispheres are current-free.

Keywords

Active regions, magnetic fields Active regions, models Magnetic fields, corona Magnetic fields, models Magnetic fields, photosphere 

Notes

Acknowledgements

The authors thank the anonymous referee for helpful and detailed comments. Data are courtesy of NASA/SDO and the AIA and HMI science teams. SOLIS/VSM vector magnetograms are produced cooperatively by NSF/NSO and NASA/LWS. The National Solar Observatory (NSO) is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation. This research was partly supported by NASA grant NNX07AU64G and by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center (GSFC), administered by Oak Ridge Associated Universities through a contract with NASA.

References

  1. Aly, J.J.: 1989, Solar Phys. 120, 19. ADSCrossRefGoogle Scholar
  2. Amari, T., Aly, J.: 2010, Astron. Astrophys. 522, A52. ADSCrossRefGoogle Scholar
  3. Amari, T., Luciani, J.F., Aly, J.J., Tagger, M.: 1996, Astrophys. J. Lett. 466, L39. ADSCrossRefGoogle Scholar
  4. Aschwanden, M.J., Malanushenko, A.: 2012, Solar Phys. doi: 10.1007/s11207-012-0070-1. Google Scholar
  5. Borrero, J.M., Tomczyk, S., Kubo, M., Socas-Navarro, H., Schou, J., Couvidat, S., Bogart, R.: 2011, Solar Phys. 273, 267. ADSCrossRefGoogle Scholar
  6. DeRosa, M.L., Schrijver, C., Barnes, G., Leka, K., Lites, B., Aschwanden, M., et al.: 2009, Astrophys. J. 696, 1780. ADSCrossRefGoogle Scholar
  7. Gary, G.A.: 2001, Solar Phys. 203, 71. ADSCrossRefGoogle Scholar
  8. Guo, Y., Ding, M.D., Liu, Y., Sun, X.D., DeRosa, M.L., Wiegelmann, T.: 2012, Astrophys. J. 760, 47. ADSCrossRefGoogle Scholar
  9. Inhester, B., Wiegelmann, T.: 2006, Solar Phys. 235, 201. ADSCrossRefGoogle Scholar
  10. Jiang, C., Feng, X.: 2012, Astrophys. J. 749, 135. ADSCrossRefGoogle Scholar
  11. Jiang, C., Feng, X., Xiang, C.: 2012, Astrophys. J. 755, 62. ADSCrossRefGoogle Scholar
  12. Leka, K.D., Barnes, G., Crouch, A.D., Metcalf, T.R., Gary, G.A., Jing, J., Liu, Y.: 2009, Solar Phys. 260, 83. ADSCrossRefGoogle Scholar
  13. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., et al.: 2012, Solar Phys. 275, 17. ADSCrossRefGoogle Scholar
  14. Lin, H., Penn, M.J., Tomczyk, S.: 2000, Astrophys. J. Lett. 541, L83. ADSCrossRefGoogle Scholar
  15. Liu, Y., Lin, H.: 2008, Astrophys. J. 680, 1496. ADSCrossRefGoogle Scholar
  16. Metcalf, T.R.: 1994, Solar Phys. 155, 235. ADSCrossRefGoogle Scholar
  17. Metcalf, T.R., Leka, K.D., Barnes, G., Lites, B.W., Georgoulis, M.K., Pevtsov, A.A., et al.: 2006, Solar Phys. 237, 267. ADSCrossRefGoogle Scholar
  18. Metcalf, T.R., De Rosa, M.L., Schrijver, C.J., Barnes, G., vanô Ballegooijen, A.A., Wiegelmann, T., Wheatland, M.S., Valori, G., McTtiernan, J.M.: 2008, Solar Phys. 247, 269. ADSCrossRefGoogle Scholar
  19. Molodensky, M.M.: 1969, Soviet Astron. 12, 585. ADSGoogle Scholar
  20. Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, Solar Phys. 275, 3. ADSCrossRefGoogle Scholar
  21. Régnier, S., Priest, E.R.: 2007, Astrophys. J. Lett. 669, L53. ADSCrossRefGoogle Scholar
  22. Sakurai, T.: 1989, Space Sci. Rev. 51, 11. ADSGoogle Scholar
  23. Schatten, K.H., Wilcox, J.M., Ness, N.F.: 1969, Solar Phys. 6, 442. ADSCrossRefGoogle Scholar
  24. Schmidt, H.U.: 1964, In: Hess, W.N. (ed.) The Physics of Solar Flares, NASA SP-50, 107. Google Scholar
  25. Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., et al.: 2012, Solar Phys. 275, 229. ADSCrossRefGoogle Scholar
  26. Schrijver, C.J., De Rosa, M.L.: 2003, Solar Phys. 212, 165. ADSCrossRefGoogle Scholar
  27. Schrijver, C.J., Title, A.M.: 2005, Astrophys. J. 619, 1077. ADSCrossRefGoogle Scholar
  28. Schrijver, C.J., Derosa, M.L., Metcalf, T.R., Liu, Y., McTiernan, J., Régnier, S., Valori, G., Wheatland, M.S., Wiegelmann, T.: 2006, Solar Phys. 235, 161. ADSCrossRefGoogle Scholar
  29. Tadesse, T., Wiegelmann, T., Inhester, B.: 2009, Astron. Astrophys. 508, 421. ADSCrossRefzbMATHGoogle Scholar
  30. Tadesse, T., Wiegelmann, T., Inhester, B., Pevtsov, A.: 2011, Astron. Astrophys. 527, A30. ADSCrossRefGoogle Scholar
  31. Tadesse, T., Wiegelmann, T., Inhester, B., Pevtsov, A.: 2012a, Solar Phys. 277, 119. ADSCrossRefGoogle Scholar
  32. Tadesse, T., Wiegelmann, T., Inhester, B., Pevtsov, A.: 2012b, Solar Phys. 281, 53. ADSGoogle Scholar
  33. Tadesse, T., Wiegelmann, T., Inhester, B., MacNeice, P., Pevtsov, A., Sun, X.: 2013, Astron. Astrophys. 550, A14. ADSCrossRefGoogle Scholar
  34. Thalmann, J.K., Wiegelmann, T., Raouafi, N.E.: 2008, Astron. Astrophys. 488, L71. ADSCrossRefGoogle Scholar
  35. Turmon, M., Jones, H.P., Malanushenko, O.V., Pap, J.M.: 2010, Solar Phys. 262, 277. ADSCrossRefGoogle Scholar
  36. Valori, G., Kliem, B., Keppens, R.: 2005, Astron. Astrophys. 433, 335. ADSCrossRefzbMATHGoogle Scholar
  37. Wang, Y.M., Sheeley, N.R. Jr.: 1990, Astrophys. J. 365, 372. ADSCrossRefGoogle Scholar
  38. Wheatland, M.S.: 2004, Solar Phys. 222, 247. ADSCrossRefGoogle Scholar
  39. Wheatland, M.S., Leka, K.D.: 2011, Astrophys. J. 728, 112. ADSCrossRefGoogle Scholar
  40. Wheatland, M.S., Régnier, S.: 2009, Astrophys. J. Lett. 700, L88. ADSCrossRefGoogle Scholar
  41. Wheatland, M.S., Sturrock, P.A., Roumeliotis, G.: 2000, Astrophys. J. 540, 1150. ADSCrossRefGoogle Scholar
  42. Wiegelmann, T.: 2004, Solar Phys. 219, 87. ADSCrossRefGoogle Scholar
  43. Wiegelmann, T.: 2007, Solar Phys. 240, 227. ADSCrossRefGoogle Scholar
  44. Wiegelmann, T., Inhester, B.: 2010, Astron. Astrophys. 516, A107. ADSCrossRefGoogle Scholar
  45. Wiegelmann, T., Inhester, B., Sakurai, T.: 2006, Solar Phys. 233, 215. ADSCrossRefGoogle Scholar
  46. Wiegelmann, T., Sakurai, T.: 2012, Living Rev. Solar Phys. 9(5). http://solarphysics.livingreviews.org/Articles/lrsp-2012-5/.
  47. Wiegelmann, T., Thalmann, J.K., Inhester, B., Tadesse, T., Sun, X., Hoeksema, J.T.: 2012, Solar Phys. 281, 37. ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Tilaye Tadesse
    • 1
    • 3
    Email author
  • T. Wiegelmann
    • 2
  • P. J. MacNeice
    • 1
  • B. Inhester
    • 2
  • K. Olson
    • 3
  • A. Pevtsov
    • 4
  1. 1.NASA, Goddard Space Flight CenterGreenbeltUSA
  2. 2.Max Planck Institut für SonnensystemforschungKatlenburg-LindauGermany
  3. 3.Department of PhysicsDrexel UniversityPhiladelphiaUSA
  4. 4.National Solar ObservatorySunspotUSA

Personalised recommendations