Advertisement

Solar Physics

, Volume 288, Issue 1, pp 39–53 | Cite as

Velocities and Temperatures of an Ellerman Bomb and Its Associated Features

  • Heesu Yang
  • Jongchul Chae
  • Eun-Kyung Lim
  • Hyungmin Park
  • Kyuhyoun Cho
  • Ram Ajor Maurya
  • Donguk Song
  • Yeon-Han Kim
  • Philip R. Goode
Initial Results from FISS

Abstract

We investigated the velocity and temperature characteristics of an Ellerman bomb (EB) and its associated features based on observations made with the Fast Imaging Solar Spectrograph (FISS) and a broadband TiO filter of the 1.6 meter New Solar Telescope at Big Bear Solar Observatory. In the TiO images of the photospheric level, we found a granular cell expanding in two opposite directions near the site of the EB. When one end of this granule reached the EB site, the transverse speed of the tip of the expanding granule rapidly decreased and the EB brightened. The wings of the Hα profile of the EB indicated that the EB was blueshifted up to 7 km s−1. About 260 s after the EB brightening, a surge was seen in absorption and varied from a blueshift of 20 km s−1 to a redshift of 40 km s−1 seen in the Hα and Ca ii 8542 Å lines. From the Doppler absorption width of the two lines determined by applying the cloud model, we estimated the mean temperature of the surge material to be about 29000 K and the mean speed of nonthermal motion to be about 11 km s−1. We discuss the physical implications of our results in terms of magnetic reconnection and processes related to it.

Keywords

Active regions, velocity field Chromosphere, active Magnetic reconnection, observational signatures Spectrum, visible Velocity fields, photosphere 

Notes

Acknowledgements

We greatly appreciate the referee’s constructive comments. We are grateful to the BBSO team for their technical support for the observations. This work was supported by the National Research Foundation of Korea (2011-0028102). E.-K. Lim is supported by the “Study of near-Earth effects by CME/HSS” project and basic research funding from KASI. Yeon-Han Kim and Eun-Kyung Lim were supported by the Construction of Korean Space Weather Center, the project of KASI, and the KASI basic research fund.

References

  1. Altschuler, M.D., Lilliequist, C.G., Nakagawa, Y.: 1968, A possible acceleration mechanism for a solar surge. Solar Phys. 5, 366 – 376. doi: 10.1007/BF00147150. ADSCrossRefGoogle Scholar
  2. Beckers, J.M.: 1964, A study of the fine structures in the solar chromosphere. Ph.D. thesis, Sacramento Peak Observatory, Air Force Cambridge Research Laboratories, USA. Google Scholar
  3. Canfield, R.: 1996, Hα surges and X-ray jets in AR 7260. Astrophys. J. 464, 1016 – 1029. doi: 10.1086/7389. ADSCrossRefGoogle Scholar
  4. Cao, W., Gorceix, N., Coulter, R., Ahn, K., Rimmele, T.R., Goode, P.R.: 2010, Scientific instrumentation for the 1.6 m New Solar Telescope in Big Bear. Astron. Nachr. 331. doi: 10.1002/asna.201011390.
  5. Carlsson, M., Stein, R.F.: 2002, Dynamic hydrogen ionization. Astrophys. J. 572, 626 – 635. doi: 10.1086/340293. ADSCrossRefGoogle Scholar
  6. Cauzzi, G., Reardon, K., Rutten, R.J., Tritschler, A., Uitenbroek, H.: 2009, The solar chromosphere at high resolution with IBIS. IV. Dual-line evidence of heating in chromospheric network. Astron. Astrophys. 503, 577 – 587. doi: 10.1051/0004-6361/200811595. ADSCrossRefGoogle Scholar
  7. Chae, J., Sakurai, T.: 2008, A test of three optical flow techniques – LCT, DAVE, and NAVE. Astrophys. J. 689, 593 – 612. doi: 10.1086/592761. ADSCrossRefGoogle Scholar
  8. Chae, J., Goode, P.R., Ahn, K., Yurchysyn, V., Abramenko, V., Andic, A., Cao, W., Park, Y.D.: 2010, New Solar Telescope observations of magnetic reconnection occurring in the chromosphere of the quiet Sun. Astrophys. J. Lett. 713, L6 – L10. doi: 10.1088/2041-8205/713/1/L6. ADSCrossRefGoogle Scholar
  9. Chae, J., Park, H.-M., Ahn, K., Yang, H., Park, Y.-D., Nah, J., Jang, B.H., Cho, K.-S., Cao, W., Goode, P.R.: 2012, Fast Imaging Solar Spectrograph of the 1.6 meter New Solar Telescope at Big Bear Solar Observatory. Solar Phys. doi: 10.1007/s11207-012-0147-x. Google Scholar
  10. Dara, H.C., Alissandrakis, C.E., Zachariadis, T.G., Georgakilas, A.A.: 1997, Magnetic and velocity field in association with Ellerman bombs. Astron. Astrophys. 322, 653 – 658. ADSGoogle Scholar
  11. Delbouille, L., Roland, G.: 1995, High-resolution solar and atmospheric spectroscopy from the Jungfraujoch high-altitude station. Opt. Eng. 34, 2736 – 2739. doi: 10.1117/12.205676. ADSCrossRefGoogle Scholar
  12. Ding, M.D., Henoux, J.-C., Fang, C.: 1998, Line profiles in moustaches produced by an impacting energetic particle beam. Astron. Astrophys. 332, 761 – 766. ADSGoogle Scholar
  13. Ellerman, F.: 1917, Solar hydrogen “bombs”. Astrophys. J. 46, 298 – 300. doi: 10.1086/142366. ADSCrossRefGoogle Scholar
  14. Fang, C., Tang, Y.H., Xu, Z., Ding, M.D., Chen, P.F.: 2006, Spectral analysis of Ellerman bombs. Astrophys. J. 643, 1325 – 1336. doi: 10.1086/501342. ADSCrossRefGoogle Scholar
  15. Georgoulis, M.K., Rust, D.M., Bernasconi, P.N., Schmieder, B.: 2002, Statistics, morphology, and energetics of Ellerman bombs. Astrophys. J. 575, 506 – 528. doi: 10.1086/341195. ADSCrossRefGoogle Scholar
  16. Isobe, H., Tripathi, D., Archontis, V.: 2007, Ellerman bombs and jets associated with resistive flux emergence. Astrophys. J. Lett. 657, L53 – L56. doi: 10.1086/512969. ADSCrossRefGoogle Scholar
  17. Jess, D.B., Mathioudakis, M., Browning, P.K., Crockett, P.J., Keenan, F.P.: 2010, Microflare activity driven by forced magnetic reconnection. Astrophys. J. Lett. 712, L111 – L115. doi: 10.1088/2041-8205/712/1/L111. ADSCrossRefGoogle Scholar
  18. Kitai, R.: 1983, On the mass motions and the atmospheric states of moustaches. Solar Phys. 87, 135 – 154. doi: 10.1007/BF00151165. ADSCrossRefGoogle Scholar
  19. Kurokawa, H., Kawaguchi, I., Funakoshi, Y., Nakai, Y.: 1982, Morphological and evolutional features of Ellerman bombs. Solar Phys. 79, 77 – 84. doi: 10.1007/BF00146974. ADSCrossRefGoogle Scholar
  20. Lim, E.-K., Yurchyshyn, V., Abramenko, V., Ahn, K., Cao, W., Goode, P.: 2011, Photospheric signatures of granular-scale flux emergence and cancellation at the penumbral boundary. Astrophys. J. 740, 82. doi: 10.1088/0004-637X/740/2/82. ADSCrossRefGoogle Scholar
  21. Matsumoto, T., Kitai, R., Shibata, K., Otsuji, K., Naruse, T., Shiota, D., Takasaki, H.: 2008, Height dependence of gas flows in an Ellerman bomb. Publ. Astron. Soc. Japan 60, 95 – 102. ADSGoogle Scholar
  22. Pariat, E., Aulanier, G., Schmieder, B.: 2004, Resistive emergence of undulatory flux tubes. Astrophys. J. 614, 1099 – 1112. doi: 10.1086/423891. ADSCrossRefGoogle Scholar
  23. Pariat, E., Schmieder, B., Berlicki, A., Deng, Y., Mein, N., Ariste, A.L., Wang, S.: 2007, Spectrophotometric analysis of Ellerman bombs in the Ca ii, Hα, and UV range. Astron. Astrophys. 289, 279 – 289. doi: 10.1051/0004-6361:20067011. ADSCrossRefGoogle Scholar
  24. Park, H., Chae, J., Song, D., Maurya, R., Yang, H., Park, Y., Jang, B., Nah, J., Cho, K., Kim, Y., Ahn, K., Cao, W., Goode, P.: 2013, Determination of temperature of solar prominences/filaments using Fast Imaging Solar Spectrograph with the 1.6 m New Solar Telescope at the Big Bear Solar Observatory – I. Limb. Solar Phys. doi: 10.1007/s11207-013-0271-2. Google Scholar
  25. Payne, T.E.W.: 1993, A multiwavelength study of solar Ellerman bombs. Ph.D. thesis, New Mexico State University. Google Scholar
  26. Roy, J.R.: 1973, The magnetic properties of solar surges. Solar Phys. 28, 95 – 114. doi: 10.1007/BF00152915. ADSCrossRefGoogle Scholar
  27. Rust, D.: 1968, Chromospheric explosions and satellite sunspots In: Kiepenheuer, K.O. (ed.) Structure and Development of Solar Active Regions, IAU Symp. 35, 77 – 84. CrossRefGoogle Scholar
  28. Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A., Tomczyk, S.: 2012, Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 229 – 259. doi: 10.1007/s11207-011-9842-2. ADSCrossRefGoogle Scholar
  29. Song, D., Henoux, J.-C., Fang, C.: 2013, Determination of temperature of solar prominences/filaments using Fast Imaging Solar Spectrograph with the 1.6 m New Solar Telescope at the Big Bear Solar Observatory – II. Filament. Solar Phys. submitted. Google Scholar
  30. Tziotziou, K., Tsiropoula, G., Sütterlin, P.: 2005, DOT tomography of the solar atmosphere. V. Analysis of a surge from AR10486. Astron. Astrophys. 444, 265 – 274. doi: 10.1051/0004-6361:20053604. ADSCrossRefGoogle Scholar
  31. Watanabe, H., Vissers, G., Kitai, R., Voort, L.R.V.D., Rutten, R.J.: 2011, Ellerman bombs at high resolution: I. Morphological evidence for photospheric reconnection. Astrophys. J. 736, 71. doi: 10.1088/0004-637X/736/1/71. ADSCrossRefGoogle Scholar
  32. Wöger, F., von der Lühe, O., Reardon, K.: 2008, Speckle interferometry with adaptive optics corrected solar data. Astron. Astrophys. 488, 375 – 381. doi: 10.1051/0004-6361:200809894. ADSCrossRefGoogle Scholar
  33. Yokoyama, T., Shibata, K.: 1996, Numerical simulation of solar coronal X-ray jets based on the magnetic reconnection model. Publ. Astron. Soc. Japan 48, 353 – 376. ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Heesu Yang
    • 1
  • Jongchul Chae
    • 1
  • Eun-Kyung Lim
    • 2
  • Hyungmin Park
    • 1
  • Kyuhyoun Cho
    • 1
  • Ram Ajor Maurya
    • 1
  • Donguk Song
    • 1
  • Yeon-Han Kim
    • 2
  • Philip R. Goode
    • 3
  1. 1.Astronomy Program, Department of Physics and AstronomySeoul National UniversitySeoulKorea
  2. 2.Korea Astronomy & Space Science InstituteDaejeonKorea
  3. 3.Big Bear Solar ObservatoryBig Bear CityUSA

Personalised recommendations