Solar Physics

, Volume 289, Issue 1, pp 369–378 | Cite as

The Electron Firehose and Ordinary-Mode Instabilities in Space Plasmas

  • M. Lazar
  • S. Poedts
  • R. Schlickeiser
  • D. Ibscher


Self-generated wave fluctuations are particularly interesting in the solar wind and magnetospheric plasmas, where Coulomb collisions are rare and cannot explain the observed states of quasi-equilibrium. Linear theory predicts that firehose and ordinary-mode instabilities can develop under the same conditions, which makes it challenging to separate the role of these instabilities in conditioning the space-plasma properties. The hierarchy of these two instabilities is reconsidered here for nonstreaming plasmas with an electron-temperature anisotropy T >T , where ∥ and ⊥ denote directions with respect to the local mean magnetic field. In addition to the previously reported comparative analysis, here the entire 3D wave-vector spectrum of the competing instabilities is investigated, with a focus on the oblique firehose instability and the relatively poorly known ordinary-mode instability. Results show a dominance of the oblique firehose instability with a threshold lower than the parallel firehose instability and lower than the ordinary-mode instability. For stronger anisotropies, the ordinary mode can grow faster, with maximum growth rates exceeding those of the oblique firehose instability. In contrast to previous studies that claimed a possible activity of the ordinary-mode in the low β [< 1] regimes, here it is rigorously shown that only the high β [> 1] regimes are susceptible to these instabilities.


Corona Flares, dynamics Solar wind Instabilities Waves, plasma 



ML acknowledges financial support from the EU Commission and Research Foundation Flanders (FWO) as FWO Pegasus Marie Curie Fellow (grant The authors acknowledge support from the Ruhr-Universität Bochum, the Deutsche Forschungsgemeinschaft (DFG), grant Schl 201/21-1, and by the Katholieke Universiteit Leuven. These results were obtained in the framework of the projects GOA/2009-009 (KU Leuven), G.0729.11 (FWO-Vlaanderen) and C 90347 (ESA Prodex 9). The research leading to these results has also received funding from the European Commission’s Seventh Framework Programme (FP7/2007-2013) under the grant agreements SOLSPANET (project n° 269299, ), SPACECAST (project n° 262468, ), eHeroes (project n° 284461, ) and SWIFF (project n° 263340, ).


  1. Bale, S., Kasper, J.C., Howes, G.G., Quataert, E., Salem, E., Sundkvist, D.: 2009, Magnetic fluctuation power near proton temperature anisotropy instability thresholds in the solar wind. Phys. Rev. Lett. 103, 211101. doi: 10.1103/PhysRevLett.103.211101. ADSCrossRefGoogle Scholar
  2. Camporeale, E., Burgess, D.: 2008, Electron firehose instability: kinetic linear theory and two-dimensional particle-in-cell simulations. J. Geophys. Res. 113, A07107. doi: 10.1029/2008JA013043. ADSCrossRefGoogle Scholar
  3. Fried, B.D.: 1959, Mechanism for instability of transverse plasma waves. Phys. Fluids 2, 337. doi: 10.1063/1.1705933. MathSciNetADSCrossRefGoogle Scholar
  4. Gary, S.P.: 1993, Theory of Space Plasma Microinstabilities, Cambridge University Press, Cambridge. CrossRefGoogle Scholar
  5. Gary, S.P., Karimabadi, H.: 2006, Linear theory of electron temperature anisotropy instabilities: Whistler, mirror, and Weibel. J. Geophys. Res. 111, A11224. doi: 10.1029/2006JA011764. ADSCrossRefGoogle Scholar
  6. Gary, S.P., Madland, D.: 1985, Electromagnetic electron temperature anisotropy instabilities. J. Geophys. Res. 90, 7607 – 7610. doi: 10.1029/JA090iA08p07607. ADSCrossRefGoogle Scholar
  7. Gary, S.P., Nishimura, K.: 2003, Resonant electron firehose instability: particle-in-cell simulations. Phys. Plasmas 10, 3571 – 3576. doi: 10.1063/1.1590982. ADSCrossRefGoogle Scholar
  8. Gary, S.P., Neagu, E., Skoug, R.M., Goldstein, B.E.: 1999, Solar wind electrons: parametric constraints. J. Geophys. Res. 104, 19843 – 19849. doi: 10.1029/1999JA900244. ADSCrossRefGoogle Scholar
  9. Hamasaki, S.: 1968, Electromagnetic microinstabilities of plasmas in a uniform magnetic induction. Phys. Fluids 11, 2724 – 2727. doi: 10.1063/1.1691879. ADSCrossRefGoogle Scholar
  10. Hellinger, P., Travnicek, P., Kasper, J.C., Lazarus, A.J.: 2006, Solar wind proton temperature anisotropy: linear theory and WIND/SWE observations. Geophys. Res. Lett. 33, L09101. doi: 10.1029/2006GL025925. ADSCrossRefGoogle Scholar
  11. Ibscher, D., Lazar, M., Schlickeiser, R.: 2012, On the existence of Weibel instability in a magnetized plasma. II. Perpendicular wave propagation: the ordinary mode. Phys. Plasmas 19, 072116. doi: 10.1063/1.4736992. ADSCrossRefGoogle Scholar
  12. Lazar, M., Poedts, S.: 2009, Limits for the firehose instability in space plasmas. Solar Phys. 258, 119 – 128. doi: 10.1007/s11207-009-9405-y. ADSCrossRefGoogle Scholar
  13. Lazar, M., Schlickeiser, R., Poedts, S.: 2010, Nonresonant electromagnetic instabilities in space plasmas: interplay of Weibel and firehose instabilities. In: AIP Conf. Proc. 1216, 280 – 283. doi: 10.1063/1.3395855. Google Scholar
  14. Li, X., Habbal, S.R.: 2000, Electron kinetic firehose instability. J. Geophys. Res. 105, 27377 – 27385. doi: 10.1029/2000JA000063. ADSCrossRefGoogle Scholar
  15. Marsch, E.: 2006, Kinetic physics of the solar corona and solar wind. Living Rev. Solar Phys. 3, 1. doi: 10.12942/lrsp-2006-1. ADSCrossRefGoogle Scholar
  16. Messmer, P.: 2002, Temperature isotropization in solar flare plasmas due to the electron firehose instability. Astron. Astrophys. 382, 301 – 311. doi: 10.1051/0004-6361:20011583. ADSCrossRefGoogle Scholar
  17. Paesold, G., Benz, A.O.: 1999, Electron firehose instability and acceleration of electrons in solar flares. Astron. Astrophys. 351, 741 – 746. ADSGoogle Scholar
  18. Paesold, G., Benz, A.O.: 2003, Test particle simulation of the electron firehose instability. Astron. Astrophys. 401, 711 – 720. doi: 10.1051/0004-6361:20030113. ADSCrossRefGoogle Scholar
  19. Pokhotelov, O.A., Treumann, R.A., Sagdeev, R.Z., Balikhin, M.A., Onishchenko, O.G., Pavlenko, V.P., Sandberg, I.: 2002, Linear theory of the mirror instability in non-Maxwellian space plasmas. J. Geophys. Res. 107, 1312. doi: 10.1029/2001JA009125. CrossRefGoogle Scholar
  20. Salem, C.S., Howes, G.G., Sundkvist, D., Bale, S.D., Chaston, C.C., Chen, C.H.K., Mozer, F.S.: 2012, Identification of kinetic Alfvén wave turbulence in the solar wind. Astrophys. J. Lett. 745, L9. doi: 10.1088/2041-8205/745/1/L9. ADSCrossRefGoogle Scholar
  21. Schlickeiser, R., Lazar, M., Skoda, T.: 2011, Spontaneously growing, weakly propagating, transverse fluctuations in anisotropic magnetized thermal plasmas. Phys. Plasmas 18, 012103. doi: 10.1063/1.3532787. ADSCrossRefGoogle Scholar
  22. Stverak, S., Travnicek, P., Maksimovic, M., Marsch, E., Fazakerley, A.N., Scime, E.E.: 2008, Electron temperature anisotropy constraints in the solar wind. J. Geophys. Res. 113, A03103. doi: 10.1029/2007JA012733. ADSCrossRefGoogle Scholar
  23. Swanson, D.G.: 2003, Plasma Waves, 2nd edn., IOP Publishing Ltd., Bristol. Google Scholar
  24. Weibel, E.S.: 1959, Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution. Phys. Rev. Lett. 2, 83 – 84. doi: 10.1103/PhysRevLett.2.83. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • M. Lazar
    • 1
    • 2
  • S. Poedts
    • 1
  • R. Schlickeiser
    • 2
  • D. Ibscher
    • 2
  1. 1.Center for Mathematical Plasma AstrophysicsK.U. LeuvenLeuvenBelgium
  2. 2.Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und AstrophysikRuhr-Universität BochumBochumGermany

Personalised recommendations