Advertisement

Solar Physics

, Volume 289, Issue 1, pp 407–421 | Cite as

The 22-Year Hale Cycle in Cosmic Ray Flux – Evidence for Direct Heliospheric Modulation

  • S. R. Thomas
  • M. J. Owens
  • M. Lockwood
Article

Abstract

The ability to predict times of greater galactic cosmic ray (GCR) fluxes is important for reducing the hazards caused by these particles to satellite communications, aviation, or astronauts. The 11-year solar-cycle variation in cosmic rays is highly correlated with the strength of the heliospheric magnetic field. Differences in GCR flux during alternate solar cycles yield a 22-year cycle, known as the Hale Cycle, which is thought to be due to different particle drift patterns when the northern solar pole has predominantly positive (denoted as qA>0 cycle) or negative (qA<0) polarities. This results in the onset of the peak cosmic-ray flux at Earth occurring earlier during qA>0 cycles than for qA<0 cycles, which in turn causes the peak to be more dome-shaped for qA>0 and more sharply peaked for qA<0. In this study, we demonstrate that properties of the large-scale heliospheric magnetic field are different during the declining phase of the qA<0 and qA>0 solar cycles, when the difference in GCR flux is most apparent. This suggests that particle drifts may not be the sole mechanism responsible for the Hale Cycle in GCR flux at Earth. However, we also demonstrate that these polarity-dependent heliospheric differences are evident during the space-age but are much less clear in earlier data: using geomagnetic reconstructions, we show that for the period of 1905 – 1965, alternate polarities do not give as significant a difference during the declining phase of the solar cycle. Thus we suggest that the 22-year cycle in cosmic-ray flux is at least partly the result of direct modulation by the heliospheric magnetic field and that this effect may be primarily limited to the grand solar maximum of the space-age.

Keywords

22-year cycle Cosmic rays Heliospheric current sheet Solar variability Polarity reversal 

Notes

Acknowledgements

We are grateful to the Space Physics Data Facility (SPDF) of NASA’s Goddard Space Flight Centre for combining the data into the OMNI 2 data set, which was obtained via the GSFC/SPDF OMNIWeb interface at omniweb.gsfc.nasa.gov and to the Marshall Space Flight Centre for the Sunspot Number data obtained from MSFC at solarscience.msfc.nasa.gov/greenwch.shtml . We also thank the Bartol Research Institute of the University of Delaware for the neutron-monitor data from McMurdo, which is supported by NSF grant ATM-0527878 and J.T. Hoeksema of Stanford University for WSO magnetograms. The work of SRT is supported by a studentship from the UK’s Natural Environment Research Council (NERC).

References

  1. Ahluwalia, H.S., Ygbuhay, R.C.: 2010, Status of Galactic Cosmic Ray Recovery from Sunspot Cycle 23 Modulation CP-1216, AIP, New York, 699 – 702. Google Scholar
  2. Alanko-Huotari, K., Usoskin, I.G., Mursala, K., Kovaltsov, G.A.: 2007, Cyclic variations of the heliospheric tilt angle and cosmic ray modulation. Adv. Space Res. 40, 1064 – 1069. ADSCrossRefGoogle Scholar
  3. Babcock, H.D.: 1959, The Sun’s polar magnetic field. Astrophys. J. 130, 364 – 366. ADS:1959ApJ...130..364B, doi: 10.1086/146726. ADSCrossRefGoogle Scholar
  4. Babcock, H.W., Babcock, H.D.: 1955, The Sun’s magnetic field 1952 – 1954. Astrophys. J. 121, 349. ADSCrossRefGoogle Scholar
  5. Beer, J., Vonmoos, M., Muscheler, R.: 2006, Solar variability over the past several millennia. Space Sci. Rev. 125, 67 – 79. ADSCrossRefGoogle Scholar
  6. Berdyugina, S.V., Usoskin, I.G.: 2003, Active longitudes in sunspot activity: century scale persistence. Astron. Astrophys. 405, 1121 – 1128. ADSCrossRefGoogle Scholar
  7. Bieber, J.W., Clem, J.M., Duldig, M.L., Evenson, P.A., Humble, J.E., Pyle, R.: 2004, Latitudinal survey observations of neutron monitor multiplicity. J. Geophys. Res. 109. doi: 10.1029/2004JA010493.
  8. Chernosky, E.J.: 1966, Double sunspot-cycle variation in terrestrial magnetic activity. J. Geophys. Res. 71, 965. ADSCrossRefGoogle Scholar
  9. Cliver, E.W., Ling, A.G.: 2001, 22 year patterns in the relationship of sunspot number and tilt angle to cosmic-ray intensity. Astrophys. J. 551, 189 – 192. ADSCrossRefGoogle Scholar
  10. Cliver, E.W., Richardson, I.G., Ling, A.G.: 2011, Solar drivers of 11-year and long-term cosmic ray modulation. Space Sci. Rev. doi: 10.1007/s11214-011-9746-3. Google Scholar
  11. Ellis, W.: 1899, On the relation between magnetic disturbances and the period of solar spot frequency. Mon. Not. Roy. Astron. Soc. 60, 142 – 157. ADSGoogle Scholar
  12. Ferreira, S.E.S., Potgeiter, M.S.: 2004, Long-term cosmic-ray modulation in the heliosphere. Astrophys. J. 603, 744 – 752. ADSCrossRefGoogle Scholar
  13. Forbush, S.E.: 1954, Worldwide cosmic ray variations, 1937 – 1952. J. Geophys. Res. 59, 525 – 542. ADSCrossRefGoogle Scholar
  14. Gil, A., Alanis, M.V.: 2008, On the energy spectrum of the 27-day variation of the galactic cosmic ray intensity. In: Proc. 30th Internat. Cosmic Ray (ICRC07) Conf. 1 (SH), 601 – 604. Google Scholar
  15. Hale, G.E., Nicholson, S.B.: 1925, The law of Sun-spot polarity. Astrophys. J. 62, 270 – 300. ADSCrossRefGoogle Scholar
  16. Hapgood, M.A.: 2010, Towards a scientific understanding of the risk from extreme space weather. Adv. Space Res. 47, 2059 – 2072. ADSCrossRefGoogle Scholar
  17. Hapgood, M.A., Bowe, G., Lockwood, M., Willis, D.M., Tulunay, Y.: 1991, Variability of the interplanetary magnetic field at 1 A.U. over 24 years: 1963 – 1986. Planet. Space Sci. 39, 411 – 423. ADSCrossRefGoogle Scholar
  18. Harvey, K.L.: 1996, Large scale patterns of magnetic activity and the solar cycle. Bull. Am. Astron. Soc. 28, 867. ADSGoogle Scholar
  19. Hathaway, D.H.: 2012, The solar cycle. Living Rev. Solar Phys. 7, 1. doi: 10.12942/lrsp-2010-1. ADSGoogle Scholar
  20. Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 1994, The shape of the sunspot cycle. Solar Phys. 151, 177 – 190. ADS:1994SoPh..151..177H, doi: 10.1007/BF00654090. ADSCrossRefGoogle Scholar
  21. Jokipii, J.R., Thomas, B.: 1981, Effects of drift on the transport of cosmic rays IV. Modulation by a wavy interplanetary current sheet. Astrophys. J. 243, 1115 – 1122. ADSCrossRefGoogle Scholar
  22. Jokipii, J.R., Levy, E.H., Hubbard, W.B.: 1977, Effects of particle drift on cosmic-ray transport. I. General properties, application to solar modulation. Astrophys. J. 213, 861 – 868. ADSCrossRefGoogle Scholar
  23. King, J.H., Papitashvili, N.E.: 2005, Solar wind spatial scales in and comparisons of hourly wind and ACE plasma and magnetic field data. J. Geophys. Res. 110. doi: 10.1029/2004JA010649.
  24. Lockwood, M.: 2003, Twenty-three cycles of changing open solar magnetic flux. J. Geophys, Res. 108. doi: 10.1029/2002JA009431.
  25. Lockwood, M.: 2010, Solar change and climate: an update in the light of the current exceptional solar minimum. Proc. Roy. Soc. A 466, 303 – 329. ADSCrossRefGoogle Scholar
  26. Lockwood, M., Owens, M.J.: 2011, Centennial changes in the heliospheric magnetic field and open solar flux: the consensus view from geomagnetic data and cosmogenic isotopes and its implications. J. Geophys, Res. 116. doi: 10.1029/2010JA016220.
  27. Lockwood, M., Rouillard, A.P., Finch, I.D.: 2009, The rise and fall of open solar flux during the current grand solar maximum. Astrophys. J. 700, 937 – 944. ADSCrossRefGoogle Scholar
  28. Lockwood, M., Owens, M.J., Barnard, L., Davis, C.J., Thomas, S.R.: 2012, What is the Sun up to? Astron. Geophys. 53, 3.9 – 3.15. Google Scholar
  29. McCracken, K.G., McDonald, F.B., Beer, J., Raisbeck, G., Yiou, F.: 2004, A phenomenological study of the long-term cosmic ray modulation, 850 – 1958 AD. J. Geophys, Res. 109. doi: 10.1029/2004JA010685.
  30. Mewaldt, R., Davis, A., Lave, K., Leske, R., Stone, E., Wiedenbeck, M., Binns, W., Christian, E., Cummings, A., De Nolfo, G., Israel, M., Labrador, A., Von Rosenvinge, T.: 2010, Record-setting cosmic ray intensities in 2009 and 2010. Astrophys. J. Lett. 723, L1 – L6. ADSCrossRefGoogle Scholar
  31. Owens, M.J., Crooker, N.U., Lockwood, M.: 2011, How is open solar flux lost over the solar cycle? J. Geophys. Res. 116. doi: 10.1029/2011JA016039.
  32. Owens, M.J., Lockwood, M., Barnard, L., Davis, C.J.: 2011, Solar cycle 24: implications for energetic particles and long-term space climate change. Geophys. Res. Lett. 38, 19106. ADSCrossRefGoogle Scholar
  33. Parker, E.N.: 1965, The passage of energetically charged particles through interplanetary space. Planet. Space Sci. 13, 9 – 49. ADSCrossRefGoogle Scholar
  34. Potgieter, M.S.: 1995, The time-dependent transport of cosmic rays in the heliosphere. Astrophys. Space Sci. 116. doi: 10.1029/2010JA016220.
  35. Richardson, I.G., Cane, H.V., Wibberenz, G.: 1999, A 22-year dependence in the size of near-ecliptic corotating cosmic ray depressions during five solar minima. J. Geophys. Res. 104, 12549. ADSCrossRefGoogle Scholar
  36. Rouillard, A., Lockwood, M.: 2004, Oscillations in the open solar magnetic flux with a period of 1.68 years: imprint on galactic cosmic rays and implications for heliospheric shielding. Ann. Geophys. 22, 4381 – 4395. ADSCrossRefGoogle Scholar
  37. Rouillard, A., Lockwood, M.: 2007, The latitudinal effect of co-rotating interaction regions on galactic cosmic rays. Solar Phys. 245, 191 – 206. ADS:2007SoPh..245..191R, doi: 10.1007/s11207-007-9019-1. ADSCrossRefGoogle Scholar
  38. Ruzmaikin, A.A., Feynman, J., Neugebauer, M., Smith, E.J.: 2000, On the nature and persistence of preferred longitudes of solar activity. Bull. Am. Astron. Soc. 32, 835. ADSGoogle Scholar
  39. Schwabe, M.: 1843, Die Sonne. Von Herrn Hofrath Schwabe. Astron. Nachr. 20, 283. ADSCrossRefGoogle Scholar
  40. Smith, E.J.: 1990, The heliospheric current sheet and modulation of galactic cosmic rays. J. Geophys. Res. 95, 18731 – 18743. ADSCrossRefGoogle Scholar
  41. Smith, E.J., Thomas, E.J.: 1986, Latitudinal extent of the heliospheric current sheet and modulation of galactic cosmic rays. J. Geophys. Res. 91, 2933 – 2942. ADSCrossRefGoogle Scholar
  42. Solanki, S.K., Usoskin, I.G., Kromer, B., Schuessler, M., Beer, J.: 2004, Unusual acticity of the Sun during recent decades compared to the previous 11 000 years. Nature 431, 1084 – 1087. ADSCrossRefGoogle Scholar
  43. Svalgaard, L., Cliver, E.W., Kamide, Y.: 2005, Cycle 24: smallest in 100 years? Geophys. Res. Lett. 32. doi: 10.1029/2004GL021664.
  44. Usoskin, I.G.: 2008, A history of solar activity over millennia. Living Rev. Solar Phys. 5, 1 – 60. doi: 10.12942/lrsp-2008-3. ADSCrossRefGoogle Scholar
  45. Usoskin, I.G., Bazilevskaya, G.A., Kovaltsov, G.A.: 2011, Solar modulation parameter for cosmic rays since 1936 reconstructed from ground-based neutron monitors and Ionization chambers. J. Geophys. Res. 116. doi: 10.1029/2010JA016105.
  46. Van Allen, J.A.: 2000, On the modulation of galactic cosmic ray intensity during solar activity cycles 19, 20, 21, 22 and early 23. Geophys. Res. Lett. 27, 2453 – 2456. ADSCrossRefGoogle Scholar
  47. Waldmeier, M.: 1935, Neue Eigenschaften der Sonnenfleckenkurve. Astron. Mitt. Zurich 14, 105 – 130. ADSGoogle Scholar
  48. Wang, Y.M., Sheeley Jr., N.R., Rouillard, A.P.: 2006, Role of the Sun’s nonaxisymmetric open flux in cosmic ray modulation. Astrophys. J. 644, 638. ADSCrossRefGoogle Scholar
  49. Webber, W.R., Lockwood, J.A.: 1988, Characteristics of the 22-year modulation of cosmic rays as seen by neutron monitors. J. Geophys. Res. 93, 8735 – 8740. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.University of ReadingReadingUK

Personalised recommendations