Solar Physics

, Volume 289, Issue 1, pp 41–61 | Cite as

Changes in Quasi-periodic Variations of Solar Photospheric Fields: Precursor to the Deep Solar Minimum in Cycle 23?

  • Susanta Kumar BisoiEmail author
  • P. Janardhan
  • D. Chakrabarty
  • S. Ananthakrishnan
  • Ankur Divekar


Possible precursor signatures in the quasi-periodic variations of solar photospheric fields were investigated in the build-up to one of the deepest solar minima experienced in the past 100 years. This unusual and deep solar minimum occurred between Solar Cycles 23 and 24. We used both wavelet and Fourier analysis to study the changes in the quasi-periodic variations of solar photospheric fields. Photospheric fields were derived using ground-based synoptic magnetograms spanning the period 1975.14 to 2009.86 and covering Solar Cycles 21, 22, and 23. A hemispheric asymmetry in the periodicities of the photospheric fields was seen only at latitudes above ± 45 when the data were divided into two parts based on a wavelet analysis: one prior to 1996 and the other after 1996. Furthermore, the hemispheric asymmetry was observed to be confined to the latitude range of 45 to 60. This can be attributed to the variations in polar surges that primarily depend on both the emergence of surface magnetic flux and varying solar-surface flows. The observed asymmetry along with the fact that both solar fields above ± 45 and micro-turbulence levels in the inner-heliosphere have been decreasing since the early- to mid-nineties (Janardhan et al. in Geophys. Res. Lett. 382, 20108, 2011) suggest that around this time active changes occurred in the solar dynamo that governs the underlying basic processes in the Sun. These changes in turn probably initiated the build-up to the very deep solar minimum at the end of Cycle 23. The decline in fields above ± 45, for well over a solar cycle, would imply that weak polar fields have been generated in the past two successive solar cycles, viz. Cycles 22 and 23. A continuation of this declining trend beyond 22 years, if it occurs, will have serious implications for our current understanding of the solar dynamo.


Magnetic fields, photosphere Solar cycle, observations Solar periodicity Surges 



NSO/Kitt Peak data used here produced cooperatively by NSF/NSO, NASA/GSFC, and NOAA/SEL. This work uses SOLIS data obtained by the NSO Integrated Synoptic Program (NISP), managed by the National Solar Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under a cooperative agreement with the National Science Foundation. The wavelet software was provided by C. Torrence and G. Compo and is available at URL:


  1. Ananthakrishnan, S., Balasubramanian, V., Janardhan, P.: 1995, Latitudinal variation of solar wind velocity. Space Sci. Rev. 72, 229 – 232. doi: 10.1007/BF00768784. ADSCrossRefGoogle Scholar
  2. Ananthakrishnan, S., Coles, W.A., Kaufman, J.J.: 1980, Microturbulence in solar wind streams. J. Geophys. Res. 85, 6025 – 6030. doi: 10.1029/JA085iA11p06025. ADSCrossRefGoogle Scholar
  3. Bai, T.: 1987, Periodicities of the flare occurrence rate in solar cycle 19. Astrophys. J. Lett. 318, L85 – L91. doi: 10.1086/184943. ADSCrossRefGoogle Scholar
  4. Bai, T.: 2003, Periodicities in solar flare occurrence: analysis of cycles 19 – 23. Astrophys. J. 591, 406 – 415. doi: 10.1086/375295. ADSCrossRefGoogle Scholar
  5. Basu, S., Broomhall, A.-M., Chaplin, W.J., Elsworth, Y.: 2012, Thinning of the Sun’s magnetic layer: the peculiar solar minimum could have been predicted. Astrophys. J. 758, 43. doi: 10.1088/0004-637X/758/1/43. ADSCrossRefGoogle Scholar
  6. Choudhuri, A.R., Chatterjee, P., Jiang, J.: 2007, Predicting solar cycle 24 with a solar dynamo model. Phys. Rev. Lett. 98(13), 131103. doi: 10.1103/PhysRevLett.98.131103. ADSCrossRefGoogle Scholar
  7. Chowdhury, P., Dwivedi, B.N.: 2011, Periodicities of sunspot number and coronal index time series during solar cycle 23. Solar Phys. 270, 365 – 383. doi: 10.1007/s11207-011-9738-1. ADSCrossRefGoogle Scholar
  8. Chowdhury, P., Khan, M., Ray, P.C.: 2009, Intermediate-term periodicities in sunspot areas during solar cycles 22 and 23. Mon. Not. Roy. Astron. Soc. 392, 1159 – 1180. doi: 10.1111/j.1365-2966.2008.14117.x. ADSCrossRefGoogle Scholar
  9. Chowdhury, P., Khan, M., Ray, P.C.: 2010, Short-term periodicities in sunspot activities during the descending phase of solar cycle 23. Solar Phys. 261, 173 – 191. doi: 10.1007/s11207-009-9478-7. ADSCrossRefGoogle Scholar
  10. Chowdhury, P., Ray, P.C.: 2006, Periodicities of solar electron flare occurrence: analysis of cycles 21 – 23. Mon. Not. Roy. Astron. Soc. 373, 1577 – 1589. doi: 10.1111/j.1365-2966.2006.11120.x. ADSCrossRefGoogle Scholar
  11. Dikpati, M.: 2011, Comparison of the past two solar minima from the perspective of the interior dynamics and dynamo of the Sun. Space Sci. Rev. 143. doi: 10.1007/s11214-011-9790-z.
  12. Dikpati, M., Gilman, P.A., de Toma, G., Ulrich, R.K.: 2010, Impact of changes in the Sun’s conveyor-belt on recent solar cycles. Geophys. Res. Lett. 37, 14107. doi: 10.1029/2010GL044143. ADSGoogle Scholar
  13. Droege, W., Gibbs, K., Grunsfeld, J.M., Meyer, P., Newport, B.J., Evenson, P., Moses, D.: 1990, A 153 day periodicity in the occurrence of solar flares producing energetic interplanetary electrons. Astrophys. J. Suppl. 73, 279 – 283. doi: 10.1086/191463. ADSCrossRefGoogle Scholar
  14. D’Silva, S., Choudhuri, A.R.: 1993, A theoretical model for tilts of bipolar magnetic regions. Astron. Astrophys. 272, 621. ADSGoogle Scholar
  15. Fisher, R.A.: 1929, Tests of significance in harmonic analysis. Proc. Roy. Soc. London Ser. A, Math. Phys. Sci. 125, 54 – 59. ADSCrossRefzbMATHGoogle Scholar
  16. Forrest, D.J., Chupp, E.L., Ryan, J.M., Cherry, M.L., Gleske, I.U., Reppin, C., Pinkau, K., Rieger, E., Kanbach, G., Kinzer, R.L.: 1980, The gamma ray spectrometer for the Solar Maximum Mission. Solar Phys. 65, 15 – 23. doi: 10.1007/BF00151381. ADSCrossRefGoogle Scholar
  17. Hathaway, D.H., Rightmire, L.: 2010, Variations in the Sun’s meridional flow over a solar cycle. Science 327, 1350. doi: 10.1126/science.1181990. ADSCrossRefGoogle Scholar
  18. Howard, R.: 1974, Studies of solar magnetic fields. II – The magnetic fluxes. Solar Phys. 38, 59 – 67. doi: 10.1007/BF00161823. ADSCrossRefGoogle Scholar
  19. Howe, R., Christensen-Dalsgaard, J., Hill, F., Komm, R.W., Larsen, R.M., Schou, J., Thompson, M.J., Toomre, J.: 2000, Dynamic variations at the base of the solar convection zone. Science 287, 2456 – 2460. doi: 10.1126/science.287.5462.2456. ADSCrossRefGoogle Scholar
  20. Janardhan, P., Bisoi, S.K., Gosain, S.: 2010, Solar polar fields during cycles 21 – 23: correlation with meridional flows. Solar Phys. 267, 267 – 277. doi: 10.1007/s11207-010-9653-x. ADSCrossRefGoogle Scholar
  21. Janardhan, P., Bisoi, S.K., Ananthakrishnan, S., Tokumaru, M., Fujiki, K.: 2011, The prelude to the deep minimum between solar cycles 23 and 24: interplanetary scintillation signatures in the inner heliosphere. Geophys. Res. Lett. 382, 20108. doi: 10.1029/2011GL049227. Google Scholar
  22. Jian, L.K., Russell, C.T., Luhmann, J.G.: 2011, Comparing solar minimum 23/24 with historical solar wind records at 1 AU. Solar Phys. 69. doi: 10.1007/s11207-011-9737-2.
  23. Jiang, J., Chatterjee, P., Choudhuri, A.R.: 2007, Solar activity forecast with a dynamo model. Mon. Not. Roy. Astron. Soc. 381, 1527 – 1542. doi: 10.1111/j.1365-2966.2007.12267.x. ADSCrossRefGoogle Scholar
  24. Jiang, J., Cameron, R.H., Schmitt, D., Schussler, M.: 2011, Can surface flux transport account for the weak polar field in cycle 23? Space Sci. Rev. 136. doi: 10.1007/s11214-011-9783-y.
  25. Kile, J.N., Cliver, E.W.: 1991, A search for the 154 day periodicity in the occurrence rate of solar flares using Ottawa 2.8 GHz burst data, 1955 – 1990. Astrophys. J. 370, 442 – 448. doi: 10.1086/169831. ADSCrossRefGoogle Scholar
  26. Kiliç, H.: 2008, Midrange periodicities in sunspot numbers and flare index during solar cycle 23. Astron. Astrophys. 481, 235 – 238. doi: 10.1051/0004-6361:20078455. ADSCrossRefGoogle Scholar
  27. Kirk, M.S., Pesnell, W.D., Young, C.A., Hess Webber, S.A.: 2009, Automated detection of EUV polar coronal holes during solar cycle 23. Solar Phys. 257, 99 – 112. doi: 10.1007/s11207-009-9369-y. ADSCrossRefGoogle Scholar
  28. Knaack, R., Stenflo, J.O., Berdyugina, S.V.: 2004, Periodic oscillations in the North–South asymmetry of the solar magnetic field. Astron. Astrophys. 418, L17 – L20. doi: 10.1051/0004-6361:20040107. ADSCrossRefGoogle Scholar
  29. Knaack, R., Stenflo, J.O., Berdyugina, S.V.: 2005, Evolution and rotation of large-scale photospheric magnetic fields of the Sun during cycles 21 – 23. periodicities, North–South asymmetries and r-mode signatures. Astron. Astrophys. 438, 1067 – 1082. doi: 10.1051/0004-6361:20042091. ADSCrossRefGoogle Scholar
  30. Krivova, N.A., Solanki, S.K.: 2002, The 1.3-year and 156-day periodicities in sunspot data: wavelet analysis suggests a common origin. Astron. Astrophys. 394, 701 – 706. doi: 10.1051/0004-6361:20021063. ADSCrossRefGoogle Scholar
  31. Lean, J.: 1990, Evolution of the 155 day periodicity in sunspot areas during solar cycles 12 to 21. Astrophys. J. 363, 718 – 727. doi: 10.1086/169378. ADSCrossRefGoogle Scholar
  32. Livingston, W.: 2002, Sunspots observed to physically weaken in 2000 – 2001. Solar Phys. 207, 41 – 45. ADSCrossRefGoogle Scholar
  33. Lomb, N.R.: 1976, Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39, 447 – 462. doi: 10.1007/BF00648343. ADSCrossRefGoogle Scholar
  34. Longcope, D., Choudhuri, A.R.: 2002, The orientational relaxation of bipolar active regions. Solar Phys. 205, 63 – 92. doi: 10.1023/A:1013896013842. ADSCrossRefGoogle Scholar
  35. McComas, D.J., Ebert, R.W., Elliott, H.A., Goldstein, B.E., Gosling, J.T., Schwadron, N.A., Skoug, R.M.: 2008, Weaker solar wind from the polar coronal holes and the whole Sun. Geophys. Res. Lett. 35, L18103. doi: 10.1029/2008GL034896. ADSCrossRefGoogle Scholar
  36. Mendoza, B., Velasco, V.M., Valdés-Galicia, J.F.: 2006, Mid-term periodicities in the solar magnetic flux. Solar Phys. 233, 319 – 330. doi: 10.1007/s11207-006-4122-2. ADSCrossRefGoogle Scholar
  37. Nandy, D., Muñoz-Jaramillo, A., Martens, P.C.H.: 2011, The unusual minimum of sunspot cycle 23 caused by meridional plasma flow variations. Nature 471, 80 – 82. doi: 10.1038/nature09786. ADSCrossRefGoogle Scholar
  38. Oliver, R., Ballester, J.L.: 1994, The North–South asymmetry of sunspot areas during solar cycle 22. Solar Phys. 152, 481 – 485. doi: 10.1007/BF00680451. ADSCrossRefGoogle Scholar
  39. Oliver, R., Ballester, J.L., Baudin, F.: 1998, Emergence of magnetic flux on the Sun as the cause of a 158-day periodicity in sunspot areas. Nature 394, 552 – 553. doi: 10.1038/29012. ADSCrossRefGoogle Scholar
  40. Penn, M.J., Livingston, W.: 2006, Temporal changes in sunspot umbral magnetic fields and temperatures. Astrophys. J. Lett. 649, L45 – L48. doi: 10.1086/508345. ADSCrossRefGoogle Scholar
  41. Percival, D.B., Walden, A.T.: 1993, Spectral Analysis for Physical Applications, Cambridge University Press, Cambridge. CrossRefzbMATHGoogle Scholar
  42. Rieger, E., Kanbach, G., Reppin, C., Share, G.H., Forrest, D.J., Chupp, E.L.: 1984, A 154-day periodicity in the occurrence of hard solar flares? Nature 312, 623 – 625. doi: 10.1038/312623a0. ADSCrossRefGoogle Scholar
  43. Savitzky, A., Golay, M.J.E.: 1964, Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627 – 1639. ADSCrossRefGoogle Scholar
  44. Scargle, J.D.: 1982, Studies in astronomical time series analysis. II – Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263, 835 – 853. doi: 10.1086/160554. ADSCrossRefGoogle Scholar
  45. Scargle, J.D.: 1989, Studies in astronomical time series analysis. III – Fourier transforms, autocorrelation functions, and cross-correlation functions of unevenly spaced data. Astrophys. J. 343, 874 – 887. doi: 10.1086/167757. ADSCrossRefGoogle Scholar
  46. Schultz, M., Stattegger, K.: 1997, Spectrum: spectral analysis of unevenly spaced paleoclimatic time series. Comp. Geosci. 23, 929 – 945. CrossRefGoogle Scholar
  47. Siegel, A.F.: 1980, Testing for periodicity in a time series. J. Am. Stat. Assoc. 75, 345 – 348. CrossRefzbMATHGoogle Scholar
  48. Torrence, C., Compo, G.P.: 1998, A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61 – 78. ADSCrossRefGoogle Scholar
  49. Verma, V.K.: 1987, On the increase of solar activity in the Southern Hemisphere during solar cycle 21. Solar Phys. 114, 185 – 188. ADSCrossRefGoogle Scholar
  50. Verma, V.K., Joshi, G.C.: 1987, On the periodicities of sunspots and solar strong hard X-ray bursts. Solar Phys. 114, 415 – 418. doi: 10.1007/BF00167358. ADSCrossRefGoogle Scholar
  51. Wang, Y.-M., Sheeley, N.R. Jr.: 2003, On the fluctuating component of the Sun’s large-scale magnetic field. Astrophys. J. 590, 1111 – 1120. doi: 10.1086/375026. ADSCrossRefGoogle Scholar
  52. Wang, Y.-M., Nash, A.G., Sheeley, N.R. Jr.: 1989, Evolution of the Sun’s polar fields during sunspot cycle 21 – poleward surges and long-term behavior. Astrophys. J. 347, 529 – 539. doi: 10.1086/168143. ADSCrossRefGoogle Scholar
  53. Wang, Y.-M., Robbrecht, E., Sheeley, N.R. Jr.: 2009, On the weakening of the polar magnetic fields during solar cycle 23. Astrophys. J. 707, 1372 – 1386. doi: 10.1088/0004-637X/707/2/1372. ADSCrossRefGoogle Scholar
  54. Welch, P.D.: 1967, The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15, 70 – 73. MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Susanta Kumar Bisoi
    • 1
    Email author
  • P. Janardhan
    • 1
  • D. Chakrabarty
    • 2
  • S. Ananthakrishnan
    • 3
  • Ankur Divekar
    • 3
  1. 1.Astronomy & Astrophysics DivisionPhysical Research LaboratoryAhmedabadIndia
  2. 2.Space & Atmospheric Sciences DivisionPhysical Research LaboratoryAhmedabadIndia
  3. 3.Department of Electronic ScienceUniversity of PunePuneIndia

Personalised recommendations