Advertisement

Solar Physics

, Volume 288, Issue 2, pp 567–583 | Cite as

Measuring the Magnetic-Field Strength of the Quiet Solar Corona Using “EIT Waves”

  • D. M. Long
  • D. R. Williams
  • S. Régnier
  • L. K. Harra
Coronal Magnetometry

Abstract

Variations in the propagation of globally propagating disturbances (commonly called “EIT waves”) through the low solar corona offer a unique opportunity to probe the plasma parameters of the solar atmosphere. Here, high-cadence observations of two “EIT wave” events taken using the Atmospheric Imaging Assembly (AIA) instrument onboard the Solar Dynamics Observatory (SDO) are combined with spectroscopic measurements from the Extreme ultraviolet Imaging Spectrometer (EIS) onboard the Hinode spacecraft and used to examine the variability of the quiet coronal magnetic-field strength. The combination of pulse kinematics from SDO/AIA and plasma density from Hinode/EIS is used to show that the magnetic-field strength is in the range ≈ 2 – 6 G in the quiet corona. The magnetic-field estimates are then used to determine the height of the pulse, allowing a direct comparison with theoretical values obtained from magnetic-field measurements from the Helioseismic and Magnetic Imager (HMI) onboard SDO using global-scale PFSS and local-scale extrapolations. While local-scale extrapolations predict heights inconsistent with prior measurements, the agreement between observations and the PFSS model indicates that “EIT waves” are a global phenomenon influenced by global-scale magnetic field.

Keywords

Corona, quiet Coronal seismology Waves, propagation Magnetic fields, corona 

Notes

Acknowledgements

The authors wish to thank the anonymous referee whose comments improved the article. Hinode is a Japanese mission developed and launched by ISAS/JAXA, collaborating with NAOJ as a domestic partner, NASA and STFC (UK) as international partners. Scientific operation of the Hinode mission is conducted by the Hinode science team organised at ISAS/JAXA. This team mainly consists of scientists from institutes in the partner countries. Support for the post-launch operation is provided by JAXA and NAOJ (Japan), STFC (UK), NASA, ESA and NSC (Norway). SDO/AIA data are courtesy of NASA/SDO and the AIA science team. The research leading to these results has received funding from the European Commission’s Seventh Framework Programme under the grant agreement No. 284461 (eHEROES project).

Supplementary material

11207_2013_331_MOESM1_ESM.mp4 (4.7 mb)
(MP4 4.7 MB)
11207_2013_331_MOESM2_ESM.mp4 (3.9 mb)
(MP4 3.9 MB)

References

  1. Altschuler, M.D., Newkirk, G.: 1969, Magnetic fields and the structure of the solar corona. I: Methods of calculating coronal fields. Solar Phys. 9(1), 131 – 149. ADS:1969SoPh....9..131A, doi: 10.1007/BF00145734. ADSCrossRefGoogle Scholar
  2. Attrill, G.D.R., Harra, L.K., van Driel-Gesztelyi, L., Démoulin, P., Wülser, J.P.: 2007, Coronal “wave”: a signature of the mechanism making CMEs large-scale in the low corona? Astron. Nachr. 328(8), 760. doi: 10.1002/asna.200710794. ADSCrossRefGoogle Scholar
  3. Ballai, I., Erdélyi, R.: 2003, In: Forgács-Dajka, E., Petrovay, K., Erdélyi, R. (eds.) Challenges in Coronal Moreton Waves, Contributions to NATO Advanced Research Workshop Turbulence 13, Pub. Astron. Depart. Eötvös University, 121 – 126. Google Scholar
  4. Ballai, I., Erdélyi, R.: 2004, Damping of coronal EIT waves as a tool for plasma diagnostics. In: Lacoste, H. (ed.) Proc. SOHO 13 Waves, Oscillations and Small-Scale Transients Events in the Solar Atmosphere: A Joint View from SOHO and TRACE SP-547, ESA, Noordwijk, 433. Google Scholar
  5. Chen, P.F., Fang, C., Shibata, K.: 2005, A full view of EIT waves. Astrophys. J. 622(2), 1202 – 1210. doi: 10.1086/428084. ADSCrossRefGoogle Scholar
  6. Chen, P.F., Wu, Y.: 2011, First evidence of coexisting EIT wave and coronal Moreton wave from SDO/AIA observations. Astrophys. J. Lett. 732(2), L20. doi: 10.1088/2041-8205/732/2/L20. ADSCrossRefGoogle Scholar
  7. Chen, P.F., Wu, S.T., Shibata, K., Fang, C.: 2002, Evidence of EIT and Moreton waves in numerical simulations. Astrophys. J. Lett. 572(1), L99 – L102. doi: 10.1086/341486. ADSCrossRefGoogle Scholar
  8. Chen, F., Ding, M.D., Chen, P.F., Harra, L.K.: 2011, Spectroscopic analysis of interaction between an Extreme-ultraviolet Imaging Telescope wave and a coronal upflow region. Astrophys. J. 740(2), 116. doi: 10.1088/0004-637X/740/2/116. ADSCrossRefGoogle Scholar
  9. Cohen, O., Attrill, G.D.R., Manchester, W.B.I., Wills-Davey, M.J.: 2009, Numerical simulation of an EUV coronal wave based on the 2009 February 13 CME event observed by STEREO. Astrophys. J. 705(1), 587 – 602. doi: 10.1088/0004-637X/705/1/587. ADSCrossRefGoogle Scholar
  10. Culhane, J.L., Harra, L.K., James, A.M., Al-Janabi, K., Bradley, L.J., Chaudry, R.A., Rees, K., Tandy, J.A., Thomas, P., Whillock, M.C.R., Winter, B., Doschek, G.A., Korendyke, C.M., Brown, C.M., Myers, S., Mariska, J., Seely, J., Lang, J., Kent, B.J., Shaughnessy, B.M., Young, P.R., Simnett, G.M., Castelli, C.M., Mahmoud, S., Mapson-Menard, H., Probyn, B.J., Thomas, R.J., Davila, J., Dere, K., Windt, D., Shea, J., Hagood, R., Moye, R., Hara, H., Watanabe, T., Matsuzaki, K., Kosugi, T., Hansteen, V., Wikstol, Ø.: 2007, The EUV imaging spectrometer for Hinode. Solar Phys. 243(1), 19 – 61. ADS:2007SoPh..243...19C, doi: 10.1007/s01007-007-0293-1. ADSCrossRefGoogle Scholar
  11. Delaboudinière, J.P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., van Dessel, E.L.: 1995, EIT: Extreme-ultraviolet Imaging Telescope for the SOHO mission. Solar Phys. 162(1), 291 – 312. ADS:1995SoPh..162..291D, doi: 10.1007/BF00733432. ADSCrossRefGoogle Scholar
  12. Delannée, C., Török, T., Aulanier, G., Hochedez, J.F.: 2008, A new model for propagating parts of EIT waves: a current shell in a CME. Solar Phys. 247(1), 123 – 150. ADS:2008SoPh..247..123D, doi: 10.1007/s11207-007-9085-4. ADSCrossRefGoogle Scholar
  13. Dere, K.P., Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Kreplin, R.W., Michels, D.J., Moses, J.D., Moulton, N.E., Socker, D.G., St Cyr, O.C., Delaboudinière, J.P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Chauvineau, J.P., Marioge, J.P., Defise, J.M., Jamar, C., Rochus, P., Catura, R.C., Lemen, J.R., Gurman, J.B., Neupert, W., Clette, F., Cugnon, P., van Dessel, E.L., Lamy, P.L., Llebaria, A., Schwenn, R., Simnett, G.M.: 1997, EIT and LASCO observations of the initiation of a coronal mass ejection. Solar Phys. 175(2), 601 – 612. ADS:1997SoPh..175..601D, doi: 10.1023/A:1004907307376. ADSCrossRefGoogle Scholar
  14. Downs, C., Roussev, I.I., van der Holst, B., Lugaz, N., Sokolov, I.V., Gombosi, T.I.: 2011, Studying extreme ultraviolet wave transients with a digital laboratory: direct comparison of extreme ultraviolet wave observations to global magnetohydrodynamic simulations. Astrophys. J. 728(1), 2. doi: 10.1088/0004-637X/728/1/2. ADSCrossRefGoogle Scholar
  15. Downs, C., Roussev, I.I., van der Holst, B., Lugaz, N., Sokolov, I.V.: 2012, Understanding SDO/AIA observations of the 2010 June 13 EUV wave event: direct insight from a global thermodynamic MHD simulation. Astrophys. J. 750(2), 134. doi: 10.1088/0004-637X/750/2/134. ADSCrossRefGoogle Scholar
  16. Gopalswamy, N., Yashiro, S., Temmer, M., Davila, J., Thompson, W.T., Jones, S., McAteer, R.T.J., Wuelser, J.P., Freeland, S., Howard, R.A.: 2009, EUV wave reflection from a coronal hole. Astrophys. J. Lett. 691(2), L123 – L127. doi: 10.1088/0004-637X/691/2/L123. ADSCrossRefGoogle Scholar
  17. Harra, L.K., Sterling, A.C., Gömöry, P., Veronig, A.: 2011, Spectroscopic observations of a coronal Moreton wave. Astrophys. J. Lett. 737(1), L4. doi: 10.1088/2041-8205/737/1/L4. ADSCrossRefGoogle Scholar
  18. Kienreich, I.W., Temmer, M., Veronig, A.M.: 2009, STEREO quadrature observations of the three-dimensional structure and driver of a global coronal wave. Astrophys. J. Lett. 703(2), L118 – L122. doi: 10.1088/0004-637X/703/2/L118. ADSCrossRefGoogle Scholar
  19. Kienreich, I.W., Muhr, N., Veronig, A.M., Berghmans, D., De Groof, A., Temmer, M., Vršnak, B., Seaton, D.B.: 2012, Solar TErrestrial Relations Observatory-A (STEREO-A) and PRoject for On-Board Autonomy 2 (PROBA2) quadrature observations of reflections of three EUV waves from a coronal hole. Solar Phys. 286(1), 201 – 291. doi: 10.1007/s11207-012-0023-8. ADSCrossRefGoogle Scholar
  20. Kosugi, T., Matsuzaki, K., Sakao, T., Shimizu, T., Sone, Y., Tachikawa, S., Hashimoto, T., Minesugi, K., Ohnishi, A., Yamada, T., Tsuneta, S., Hara, H., Ichimoto, K., Suematsu, Y., Shimojo, M., Watanabe, T., Shimada, S., Davis, J.M., Hill, L.D., Owens, J.K., Title, A.M., Culhane, J.L., Harra, L.K., Doschek, G.A., Golub, L.: 2007, The Hinode (Solar-B) mission: an overview. Solar Phys. 243(1), 3 – 17. ADS:2007SoPh..243....3K, doi: 10.1007/s11207-007-9014-6. ADSCrossRefGoogle Scholar
  21. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275(1), 17 – 40. ADS:2012SoPh..275...17L, doi: 10.1007/s11207-011-9776-8. ADSCrossRefGoogle Scholar
  22. Lin, H., Kuhn, J.R., Coulter, R.: 2004, Coronal magnetic field measurements. Astrophys. J. Lett. 613(2), L177 – L180. doi: 10.1086/425217. ADSCrossRefGoogle Scholar
  23. Lin, H., Penn, M.J., Tomczyk, S.: 2000, A new precise measurement of the coronal magnetic field strength. Astrophys. J. Lett. 541(2), L83 – L86. doi: 10.1086/312900. ADSCrossRefGoogle Scholar
  24. Liu, W., Nitta, N.V., Schrijver, C.J., Title, A.M., Tarbell, T.D.: 2010, First SDO AIA observations of a global coronal EUV “wave”: multiple components and “ripples”. Astrophys. J. Lett. 723(1), L53 – L59. doi: 10.1088/2041-8205/723/1/L53. ADSCrossRefGoogle Scholar
  25. Long, D.M., Deluca, E.E., Gallagher, P.T.: 2011, The wave properties of coronal bright fronts observed using SDO/AIA. Astrophys. J. Lett. 741(1), L21. doi: 10.1088/2041-8205/741/1/L21. ADSCrossRefGoogle Scholar
  26. Long, D.M., Gallagher, P.T., McAteer, R.T.J., Bloomfield, D.S.: 2008, The kinematics of a globally propagating disturbance in the solar corona. Astrophys. J. Lett. 680(1), L81 – L84. doi: 10.1086/589742. ADSCrossRefGoogle Scholar
  27. Long, D.M., Gallagher, P.T., McAteer, R.T.J., Bloomfield, D.S.: 2011, Deceleration and dispersion of large-scale coronal bright fronts. Astron. Astrophys. 531, 42. doi: 10.1051/0004-6361/201015879. ADSCrossRefGoogle Scholar
  28. Mazzotta, P., Mazzitelli, G., Colafrancesco, S., Vittorio, N.: 1998, Ionization balance for optically thin plasmas: rate coefficients for all atoms and ions of the elements H to NI. Astron. Astrophys. Suppl. 133, 403 – 409. doi: 10.1051/aas:1998330. ADSCrossRefGoogle Scholar
  29. Moses, D., Clette, F., Delaboudinière, J.P., Artzner, G.E., Bougnet, M., Brunaud, J., Carabetian, C., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Newmark, J., Thompson, B., Maucherat, A., Portier-Fozzani, F., Berghmans, D., Cugnon, P., van Dessel, E.L., Gabryl, J.R.: 1997, EIT observations of the extreme ultraviolet Sun. Solar Phys. 175(2), 571 – 599. ADS:1997SoPh..175..571M, doi: 10.1023/A:1004902913117. ADSCrossRefGoogle Scholar
  30. Muhr, N., Veronig, A.M., Kienreich, I.W., Temmer, M., Vršnak, B.: 2011, Analysis of characteristic parameters of large-scale coronal waves observed by the Solar-Terrestrial Relations Observatory/Extreme Ultraviolet Imager. Astrophys. J. 739(2), 89. doi: 10.1088/0004-637X/739/2/89. ADSCrossRefGoogle Scholar
  31. Murawski, K., Nakariakov, V.M., Pelinovsky, E.N.: 2001, Fast magnetoacoustic waves in a randomly structured solar corona. Astron. Astrophys. 366, 306 – 310. doi: 10.1051/0004-6361:20000027. ADSCrossRefMATHGoogle Scholar
  32. Olmedo, O., Vourlidas, A., Zhang, J., Cheng, X.: 2012, Secondary waves and/or the “reflection” from and “transmission” through a coronal hole of an extreme ultraviolet wave associated with the 2011 February 15 X2.2 flare observed with SDO/AIA and STEREO/EUVI. Astrophys. J. 756(2), 143. doi: 10.1088/0004-637X/756/2/143. ADSCrossRefGoogle Scholar
  33. Patsourakos, S., Vourlidas, A.: 2009, “Extreme ultraviolet waves” are waves: first quadrature observations of an extreme ultraviolet wave from STEREO. Astrophys. J. Lett. 700(2), L182 – L186. doi: 10.1088/0004-637X/700/2/L182. ADSCrossRefGoogle Scholar
  34. Patsourakos, S., Vourlidas, A., Wang, Y.M., Stenborg, G., Thernisien, A.: 2009, What is the nature of EUV waves? First STEREO 3D observations and comparison with theoretical models. Solar Phys. 259(1), 49 – 71. ADS:2009SoPh..259...49P, doi: 10.1007/s11207-009-9386-x. ADSCrossRefGoogle Scholar
  35. Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275(1), 3 – 15. ADS:2012SoPh..275....3P, doi: 10.1007/s11207-011-9841-3. ADSCrossRefGoogle Scholar
  36. Priest, E.R.: 1987, Solar Magneto-Hydrodynamics, Reidel, Dordrecht. Google Scholar
  37. Raouafi, N.E., Sahal-Bréchot, S., Lemaire, P.: 2002, Linear polarization of the O VI lambda 1031.92 coronal line. II. Constraints on the magnetic field and the solar wind velocity field vectors in the coronal polar holes. Astron. Astrophys. 396, 1019 – 1028. doi: 10.1051/0004-6361:20021418. ADSCrossRefGoogle Scholar
  38. Régnier, S., Priest, E.R., Hood, A.W.: 2008, Coronal Alfvén speeds in an isothermal atmosphere. I. Global properties. Astron. Astrophys. 491(1), 297 – 309. doi: 10.1051/0004-6361:200810362. ADSCrossRefMATHGoogle Scholar
  39. Roberts, B., Edwin, P.M., Benz, A.O.: 1984, On coronal oscillations. Astrophys. J. 279, 857 – 865. doi: 10.1086/161956. ADSCrossRefGoogle Scholar
  40. Schatten, K.H., Wilcox, J.M., Ness, N.F.: 1969, A model of interplanetary and coronal magnetic fields. Solar Phys. 6(3), 442 – 455. ADS:1969SoPh....6..442S, doi: 10.1007/BF00146478. ADSCrossRefGoogle Scholar
  41. Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275(1), 207 – 227. ADS:2012SoPh..275..207S, doi: 10.1007/s11207-011-9834-2. ADSCrossRefGoogle Scholar
  42. Schrijver, C.J., De Rosa, M.L.: 2003, Photospheric and heliospheric magnetic fields. Solar Phys. 212(1), 165 – 200. ADS:2003SoPh..212..165S, doi: 10.1023/A:1022908504100. ADSCrossRefGoogle Scholar
  43. Schrijver, C.J., Aulanier, G., Title, A.M., Pariat, E., Delannée, C.: 2011, The 2011 February 15 X2 flare, ribbons, coronal front, and mass ejection: interpreting the three-dimensional views from the Solar Dynamics Observatory and STEREO guided by magnetohydrodynamic flux-rope modeling. Astrophys. J. 738(2), 167. doi: 10.1088/0004-637X/738/2/167. ADSCrossRefGoogle Scholar
  44. Thompson, B.J., Myers, D.C.: 2009, A catalog of coronal “EIT wave” transients. Astrophys. J. Suppl. 183(2), 225 – 243. doi: 10.1088/0067-0049/183/2/225. ADSCrossRefGoogle Scholar
  45. Thompson, B.J., Plunkett, S.P., Gurman, J.B., Newmark, J.S., St Cyr, O.C., Michels, D.J.: 1998, SOHO/EIT observations of an Earth-directed coronal mass ejection on May 12, 1997. Geophys. Res. Lett. 25(1), 2465 – 2468. doi: 10.1029/98GL50429. ADSCrossRefGoogle Scholar
  46. Thompson, B.J., Gurman, J.B., Neupert, W.M., Newmark, J.S., Delaboudinière, J.P., St Cyr, O.C., Stezelberger, S., Dere, K.P., Howard, R.A., Michels, D.J.: 1999, SOHO/EIT observations of the 1997 April 7 coronal transient: possible evidence of coronal Moreton waves. Astrophys. J. Lett. 517(2), L151 – L154. doi: 10.1086/312030. ADSCrossRefGoogle Scholar
  47. Uchida, Y.: 1970, Diagnosis of coronal magnetic structure by flare-associated hydromagnetic disturbances. Publ. Astron. Soc. Japan 22, 341. ADSGoogle Scholar
  48. Veronig, A.M., Muhr, N., Kienreich, I.W., Temmer, M., Vršnak, B.: 2010, First observations of a dome-shaped large-scale coronal extreme-ultraviolet wave. Astrophys. J. Lett. 716(1), L57 – L62. doi: 10.1088/2041-8205/716/1/L57. ADSCrossRefGoogle Scholar
  49. Veronig, A.M., Gömöry, P., Kienreich, I.W., Muhr, N., Vršnak, B., Temmer, M., Warren, H.P.: 2011, Plasma diagnostics of an EIT wave observed by Hinode/EIS and SDO/AIA. Astrophys. J. Lett. 743, L10. doi: 10.1088/2041-8205/743/1/L10. ADSCrossRefGoogle Scholar
  50. Wang, Y.M.: 2000, EIT waves and fast-mode propagation in the solar corona. Astrophys. J. Lett. 543(1), L89 – L93. doi: 10.1086/318178. ADSCrossRefGoogle Scholar
  51. Warmuth, A., Mann, G.: 2011, Kinematical evidence for physically different classes of large-scale coronal EUV waves. Astron. Astrophys. 532, 151. doi: 10.1051/0004-6361/201116685. ADSCrossRefGoogle Scholar
  52. Warmuth, A., Vršnak, B., Magdalenić, J., Hanslmeier, A., Otruba, W.: 2004, A multiwavelength study of solar flare waves. I. Observations and basic properties. Astron. Astrophys. 418, 1101 – 1115. doi: 10.1051/0004-6361:20034332. ADSCrossRefGoogle Scholar
  53. West, M.J., Zhukov, A.N., Dolla, L., Rodriguez, L.: 2011, Coronal seismology using EIT waves: estimation of the coronal magnetic field strength in the quiet Sun. Astrophys. J. 730(2), 122. doi: 10.1088/0004-637X/730/2/122. ADSCrossRefGoogle Scholar
  54. White, S.M., Kundu, M.R.: 1997, Radio observations of gyroresonance emission from coronal magnetic fields. Solar Phys. 174(1), 31 – 52. ADS:1997SoPh..174...31W, doi: 10.1023/A:1004975528106. ADSCrossRefGoogle Scholar
  55. Wills-Davey, M.J., Thompson, B.J.: 1999, Observations of a propagating disturbance in TRACE. Solar Phys. 190(1), 467 – 483. ADS:1999SoPh..190..467W, doi: 10.1023/A:1005201500675. ADSCrossRefGoogle Scholar
  56. Young, P.R., Del Zanna, G., Mason, H.E., Dere, K.P., Landi, E., Landini, M., Doschek, G.A., Brown, C.M., Culhane, L., Harra, L.K., Watanabe, T., Hara, H.: 2007, EUV emission lines and diagnostics observed with Hinode/EIS. Publ. Astron. Soc. Japan 59, 857. ADSGoogle Scholar
  57. Zheng, R., Jiang, Y., Yang, J., Bi, Y., Hong, J., Yang, B., Yang, D.: 2012, Homologous extreme ultraviolet waves in the emerging flux region observed by the Solar Dynamics Observatory. Astrophys. J. 747(1), 67. doi: 10.1088/0004-637X/747/1/67. ADSCrossRefGoogle Scholar
  58. Zhukov, A.N., Auchère, F.: 2004, On the nature of EIT waves, EUV dimmings and their link to CMEs. Astron. Astrophys. 427, 705 – 716. doi: 10.1051/0004-6361:20040351. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • D. M. Long
    • 1
  • D. R. Williams
    • 1
  • S. Régnier
    • 2
  • L. K. Harra
    • 1
  1. 1.Mullard Space Science LaboratoryUniversity College LondonDorkingUK
  2. 2.Jeremiah Horrocks InstituteUniversity of Central LancashirePrestonUK

Personalised recommendations