Solar Physics

, Volume 284, Issue 2, pp 515–539 | Cite as

Numerical Simulations of Dome-Shaped EUV Waves from Different Active-Region Configurations

  • M. Selwa
  • S. Poedts
  • C. R. DeVore
Advances in European Solar Physics


Recently, 3D STEREO observations explained the 3D structure of EUV waves. Patsourakos and Vourlidas (Astrophys. J. 700, L182, 2009), Veronig et al. (Astrophys. J. 716, L57, 2010) and Selwa, Poedts, and DeVore (Astrophys. J. 747, L21, 2012) reported on the dome-shaped EUV waves resulting from different events. Here, we model, by means of 3D MHD simulations, the formation of dome-shaped EUV waves in rotating active regions (ARs). The numerical simulations are initialized with idealized (multi-)dipolar coronal (low β) configurations. Next, we apply a sheared rotational motion to the central parts of all the positive and negative flux regions at the photospheric boundary. As a result, the flux tubes connecting the flux sources become twisted. We find that in all the studied configurations of idealized ARs, the rotating motion results in a dome-shaped structure originating from the AR. However, the shape of the dome depends on the initial configuration (topology of the AR). The initial stage of the wave evolution consists of multiple fronts that later merge together forming a single wave. The observed EUV wave propagates nearly isotropically on the disk and also in the upward direction. We remark that the initial stage of the evolution is determined by the driver and not caused by a magnetic reconnection event. At a later stage, however, the wave propagates freely. We study the different wave properties resulting from different driver speeds and find that independent of the initial AR topology the 3D dome-shaped wave is excited in the system. The symmetry of the 3D dome depends on the topology of the AR and on the duration of the driver. The EUV wave triggered is independent of the temporal profile of the driver. However, the properties of the wave (speed, sharpness of the cross-section, etc.) depend on the type of the trigger.


Active regions, models Corona, structures Flares, pre-flare phenomena Flares, waves EUV waves, propagation 



MS expresses thanks to Dr. Leon Ofman and the referee for their comments. MS’s work was supported by the SIDC Data Exploitation (ESA Prodex 9 C 90347) project. Part of her work was supported by the European Commission under the Solaire Marie Curie Training Network. SP’s work was supported by the projects GOA/2009-009 (KU Leuven), G.0729.11 (FWO-Vlaanderen) and C 90347 (ESA Prodex 9). Financial support also was provided by the European Commission’s Seventh Framework Programme (FP7) under grant agreements SOLSPANET (project 269299, ), SPACECAST (project 262468,, and SWIFF (project 263340, ). CRD’s work was supported by NASA. For the computations we used the infrastructure of the VSC Flemish Supercomputer Center, funded by the Hercules Foundation and the Flemish government department EWI.


  1. Amari, T., Luciani, J.F., Aly, J.J., Tagger, M.: 1996, Astrophys. J. 466, L39. ADSCrossRefGoogle Scholar
  2. Aulanier, G., Démoulin, P., Grappin, R.: 2005, Astron. Astrophys. 430, 1067. ADSzbMATHCrossRefGoogle Scholar
  3. Biesecker, D.A., Myers, D.C., Thompson, B.J., Hammer, D.M., Vourlidas, A.: 2002, Astrophys. J. 569, 1009. ADSCrossRefGoogle Scholar
  4. Brandt, P.N., Scharmer, G.B., Ferguson, S., Shine, R.A., Tarbell, T.F., Title, A.M.: 1988, Nature 335, 238. ADSCrossRefGoogle Scholar
  5. Brown, D.: Rotating sunspots spin up a super solar flare, PHYSorg. com, 21 April 2011.
  6. Brown, D.S., Nightingale, R.W., Alexander, D., Schrijver, C.J., Metcalf, T.R., Shine, R.A., Title, A.M., Wolfson, C.J.: 2003, Solar Phys. 216, 79. ADSCrossRefGoogle Scholar
  7. Chen, P.F.: 2006, Astrophys. J. 641, L153. ADSCrossRefGoogle Scholar
  8. Chen, P.F., Wu, S.T., Shibata, K., Fang, C.: 2002, Astrophys. J. 572, L99. ADSCrossRefGoogle Scholar
  9. Cliver, E.W., Laurenza, M., Storini, M., Thompson, B.J.: 2005, Astrophys. J. 631, 604. ADSCrossRefGoogle Scholar
  10. Cohen, O., Attrill, G.D.R., Manchester IV, W.B.,, Wills-Davey, M.J.: 2009, Astrophys. J. 705, 587. ADSCrossRefGoogle Scholar
  11. Delannée, C., Hochedez, J.F., Aulanier, G.: 2007, Astron. Astrophys. 465, 603. ADSCrossRefGoogle Scholar
  12. Delannée, C., Török, T., Aulanier, G., Hochedez, J.F.: 2008, Solar Phys. 247, 123. ADSCrossRefGoogle Scholar
  13. DeVore, C.R.: 1991, J. Comput. Phys. 92, 142. ADSzbMATHCrossRefGoogle Scholar
  14. DeVore, C.R., Antiochos, S.K.: 2000, Astrophys. J. 539, 954. ADSCrossRefGoogle Scholar
  15. Downs, C., Roussev, I.I., van der Holst, B., Lugaz, N., Sokolov, I.V., Gombosi, T.I.: 2011, Astrophys. J. 728, 2. ADSCrossRefGoogle Scholar
  16. Evershed, J.: 1910, Mon. Not. Roy. Astron. Soc. 70, 217. ADSGoogle Scholar
  17. Gallagher, P.T., Long, D.M.: 2011, Space Sci. Rev. 158, 365 ADSCrossRefGoogle Scholar
  18. Gibson, S.E., Low, B.C.: 1998, Astrophys. J. 493, 460 ADSCrossRefGoogle Scholar
  19. Hofmann, A., Rendtel, J., Aurass, H., Kalman, B.: 1987, Solar Phys. 108, 151. ADSCrossRefGoogle Scholar
  20. Kempf, P.: 1910, Astron. Nachr. 185, 197. ADSCrossRefGoogle Scholar
  21. Kienreich, I.W., Temmer, M., Veronig, A.M.: 2009, Astrophys. J. 703, L118. ADSCrossRefGoogle Scholar
  22. Klassen, A., Aurass, H., Mann, G., Thompson, B.J.: 2000, Astron. Astrophys. Suppl. Ser. 141, 357. ADSCrossRefGoogle Scholar
  23. Kučera, A.: 1982, Bull. Astron. Inst. Czechoslov. 33, 345. ADSGoogle Scholar
  24. Liu, W., Nitta, N.V., Schrijver, C.J., Title, A., Tarbell, T.D.: 2010, Astrophys. J. 723, L53. ADSCrossRefGoogle Scholar
  25. Liu, W., Ofman, L., Nitta, N.V., Aschwanden, M.J., Schrijver, C.J., Title, A.M., Tarbell, T.D.: 2012, Astrophys. J. 753, 52. ADSCrossRefGoogle Scholar
  26. Ma, S., Wills-Davey, M.J., Lin, J., Chen, P.F., Attrill, G.D.R., Chen, H., Zhao, S., Li, Q., Golub, L.: 2009, Astrophys. J. 707, 503. ADSCrossRefGoogle Scholar
  27. Maltby, P.: 1964, Astrophys. Nor. 8, 205. ADSGoogle Scholar
  28. Min, S., Chae, J.: 2009, Solar Phys. 258, 203. ADSCrossRefGoogle Scholar
  29. Ofman, L.: 2007, Astrophys. J. 655, 1134. ADSCrossRefGoogle Scholar
  30. Ofman, L., Thompson, B.J.: 2002, Astrophys. J. 574, 440. ADSCrossRefGoogle Scholar
  31. Patsourakos, S., Vourlidas, A.: 2009, Astrophys. J. 700, L182. ADSCrossRefGoogle Scholar
  32. Patsourakos, S., Vourlidas, A., Kliem, B.: 2010, Astron. Astrophys. 522, A100. ADSCrossRefGoogle Scholar
  33. Patsourakos, S., Vourlidas, A., Wang, Y.M., Stenborg, G., Thernisien, A.: 2009, Solar Phys. 259, 49. ADSCrossRefGoogle Scholar
  34. Schlichenmaier, R., Rezaei, R., Bello González, N.: 2012, In: Bellot Rubio, L., Reale, F., Carlsson, M. (eds.) Hinode 4: Unsolved Problems and Recent Insights CS-455, Astron. Soc. Pac., San Francisco, 61. doi: 10.1088/2041-8205/723/2/L134. Google Scholar
  35. Schmidt, J.M., Ofman, L.: 2010, Astrophys. J. 713, 1008. ADSCrossRefGoogle Scholar
  36. Schrijver, C.J., DeRosa, M.L., Metcalf, T., Barnes, G., Lites, B., Tarbell, T., McTiernan, J., Valori, G., Wiegelman, T., Wheatland, M.S., Amari, T., Aulanier, G., Démoulin, P., Fuhrmann, M., Kusano, K., Régnier, S., Thalmann, J.K.: 2008, Astrophys. J. 675, 1637. ADSCrossRefGoogle Scholar
  37. Schrijver, C.J., Aulanier, G., Title, A.M., Pariat, E., Delannée, C.: 2011, Astrophys. J. 738, 167. ADSCrossRefGoogle Scholar
  38. Selwa, M., Poedts, S., DeVore, C.R.: 2012, Astrophys. J. 747, L21. ADSCrossRefGoogle Scholar
  39. St. John, C.E.: 1913, Astrophys. J. 37, 322. ADSCrossRefGoogle Scholar
  40. Temmer, M., Veronig, A.M., Gopalswamy, N., Yashiro, S.: 2011, Solar Phys. 273, 421. ADSCrossRefGoogle Scholar
  41. Thompson, B.J., Myers, D.C.: 2009, Astrophys. J. 183, 225. ADSCrossRefGoogle Scholar
  42. Tokman, M., Bellan, T.M.: 2002, Astrophys. J. 567, 1202. ADSCrossRefGoogle Scholar
  43. Török, T., Kliem, B.: 2003, Astron. Astrophys. 406, 1043. ADSCrossRefGoogle Scholar
  44. Veronig, A.M., Temmer, M., Vršnak, B.: 2008, Astrophys. J. 681, L113. ADSCrossRefGoogle Scholar
  45. Veronig, A.M., Muhr, N., Kienreich, I.W., Temmer, M., Vršnak, B.: 2010, Astrophys. J. 716, L57. ADSCrossRefGoogle Scholar
  46. Wang, Y.M.: 2000, Astrophys. J. 543, L89. ADSCrossRefGoogle Scholar
  47. Wang, H., Shen, C., Lin, J.: 2009, Astrophys. J. 700, 1716. ADSCrossRefGoogle Scholar
  48. Warmuth, A., Mann, G.: 2011, Astron. Astrophys. 532, A151. ADSCrossRefGoogle Scholar
  49. Warmuth, A., Vršnak, B., Magdalenić, J., Hanslmeier, A., Otruba, W.: 2004, Astron. Astrophys. 418, 1117. ADSCrossRefGoogle Scholar
  50. Wills-Davey, M.J., Attrill, G.D.R.: 2009, Space Sci. Rev. 149, 325. ADSCrossRefGoogle Scholar
  51. Wills-Davey, M.J., DeForest, C.E., Stenflo, J.O.: 2007, Astrophys. J. 664, 556. ADSCrossRefGoogle Scholar
  52. Wu, S.T., Zheng, H., Wang, S., Thompson, B.J., Plunkett, S.P., Zhao, X.P., Dryer, M.: 2001, J. Geophys. Res. 106, 25089. ADSCrossRefGoogle Scholar
  53. Wu, S.T., Li, B., Wang, S., Zheng, H.: 2005, J. Geophys. Res. 110, A11102. ADSCrossRefGoogle Scholar
  54. Yan, X.L., Qu, Z.Q., Kong, D.F.: 2008, Mon. Not. Roy. Astron. Soc. 391, 1887 ADSCrossRefGoogle Scholar
  55. Zheng, R., Jiang, Y., Yang, J.J., Bi, Y., Hong, J., Yang, B., Yang, D.: 2012, Astrophys. J. 747, 67. ADSCrossRefGoogle Scholar
  56. Zhukov, A.: 2011, J. Atmos. Solar-Terr. Phys. 73, 1096. ADSCrossRefGoogle Scholar
  57. Zhukov, A.N., Rodrigues, L., de Patou, J.: 2009, Solar Phys. 259, 73. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Centre for Mathematical Plasma Astrophysics, Department of MathematicsKU LeuvenLeuvenBelgium
  2. 2.Naval Research LaboratoryWashingtonUSA

Personalised recommendations