Solar Physics

, Volume 288, Issue 1, pp 355–368 | Cite as

Modification of Proton Velocity Distributions by Alfvénic Turbulence in the Solar Wind

Article

Abstract

In the present paper, the proton velocity distribution function (VDF) in the solar wind is determined by numerically solving the kinetic evolution equation. We compare the results obtained when considering the effects of external forces and Coulomb collisions with those obtained by adding effects of Alfvén wave turbulence. We use Fokker–Planck diffusion terms to calculate the Alfvénic turbulence, which take into account observed turbulence spectra and kinetic effects of the finite proton gyroradius. Assuming a displaced Maxwellian for the proton VDF at the simulation boundary at 14 solar radii, we show that the turbulence leads to a fast (within several solar radii) development of the anti-sunward tail in the proton VDF. Our results provide a natural explanation for the nonthermal tails in the proton VDFs, which are often observed in-situ in the solar wind beyond 0.3 AU.

Keywords

Solar wind Space plasmas Turbulence Waves 

Notes

Acknowledgements

The research leading to these results has received funding from the Belgian Federal Science Policy in the framework of the program Interuniversitary Attraction Pole for the project P7/08 CHARM and from the European Commission’s FP7 Program for the STORM (313038) and SWIFF projects (263340, swiff.eu). We thank the referee for his/her useful suggestions.

References

  1. Alexandrova, O., Saur, J., Lacombe, C., Mangeney, A., Mitchell, J., Schwartz, S.J., Robert, P.: 2009, Phys. Rev. Lett. 103, 165003. ADSCrossRefGoogle Scholar
  2. Alexandrova, O., Saur, J., Lacombe, C., Mangeney, A., Schwartz, S.J., Mitchell, J., Grappin, R., Robert, P.: 2010, In: Maksimovic, M., Issautier, K., Meyer-Vernet, N., Moncuquet, M., Pantellini, F. (eds.) Twelfth International Solar Wind Conference, AIP Conf. Proc. 1216, 144. Google Scholar
  3. Bavassano, B., Dobrowolny, M., Mariani, F., Ness, N.F.: 1982, J. Geophys. Res. 87, 3617. ADSCrossRefGoogle Scholar
  4. Cranmer, S.R., van Ballegooijen, A.A.: 2003, Astrophys. J. 594, 573. ADSCrossRefGoogle Scholar
  5. Cranmer, S.R., van Ballegooijen, A.A., Edgar, R.J.: 2007, Astrophys. J. Suppl. 171, 520. ADSCrossRefGoogle Scholar
  6. Hasegawa, A., Chen, L.: 1976, Phys. Fluids 19, 1924. ADSCrossRefGoogle Scholar
  7. He, J., Marsch, E., Tu, C., Yao, S., Tian, H.: 2011, Astrophys. J. 731, 85. ADSCrossRefGoogle Scholar
  8. He, J., Tu, C., Marsch, E., Yao, S.: 2012, Astrophys. J. Lett. 745, L8. ADSCrossRefGoogle Scholar
  9. Hinton, F.L.: 1983, In: Galeev, A.A., Sudan, R.N. (eds.) Basic Plasma Physics I, North-Holland, New York, 148. Google Scholar
  10. Lamy, H., Pierrard, V., Maksimovic, M., Lemaire, J.: 2003, J. Geophys. Res. 108, 1047. CrossRefGoogle Scholar
  11. Lemaire, J., Pierrard, V.: 2001, Astrophys. Space Sci. 277, 169. ADSCrossRefMATHGoogle Scholar
  12. Li, X., Lu, Q., Chen, Y., Li, B., Xia, L.: 2010, Astrophys. J. Lett. 719, L190. ADSCrossRefGoogle Scholar
  13. Lie-Svendsen, O., Hansteen, V.H., Leer, E.: 1997, J. Geophys. Res. 102, 4701. ADSCrossRefGoogle Scholar
  14. Lie-Svendsen, O., Leer, E.: 2000, J. Geophys. Res. 105, 35. ADSCrossRefGoogle Scholar
  15. Maksimovic, M., Pierrard, V., Lemaire, J.: 1997, Astron. Astrophys. 324, 725. ADSGoogle Scholar
  16. Marsch, E.: 2006, Living Rev. Solar Phys. 3(1). http://www.livingreviews.org/lrsp-2006-1
  17. Marsch, E., Mulhauser, K.-H., Schwenn, R., Rosenbauer, H., Pilipp, W., Neubauer, F.: 1982, J. Geophys. Res. 87, 52. ADSCrossRefGoogle Scholar
  18. Osmane, A., Hamza, A.M., Meziane, K.: 2010, J. Geophys. Res. 115, A05101. ADSCrossRefGoogle Scholar
  19. Parker, E.N.: 1958, Astrophys. J. 128, 664. ADSCrossRefGoogle Scholar
  20. Pierrard, V.: 2011, In: Pogorelov, N.V. (ed.) 5th International Conference of Numerical Modeling of Space Plasma Flows, ASP Conf. Ser. 444, 166. Google Scholar
  21. Pierrard, V., Lazar, M., Schlickeiser, R.: 2011, Solar Phys. 269, 421. ADSCrossRefGoogle Scholar
  22. Pierrard, V., Lemaire, J.: 1996, J. Geophys. Res. 101, 7923. ADSCrossRefGoogle Scholar
  23. Pierrard, V., Lemaire, J.: 1998, J. Geophys. Res. 103, 11701. ADSCrossRefGoogle Scholar
  24. Pierrard, V., Maksimovic, M., Lemaire, J.: 1999, J. Geophys. Res. 104, 17021. ADSCrossRefGoogle Scholar
  25. Pierrard, V., Maksimovic, M., Lemaire, J.: 2001, J. Geophys. Res. 107, 29305. ADSCrossRefGoogle Scholar
  26. Pierrard, V., Voitenko, Y.: 2010, In: Maksimovic, M., Issautier, K., Meyer-Vernet, N., Moncuquet, M., Pantellini, F. (eds.) Twelfth International Solar Wind Conference, AIP Conf. Proc. 1216, 102. Google Scholar
  27. Podesta, J.J., Gary, S.P.: 2011, Astrophys. J. 734, 15. ADSCrossRefGoogle Scholar
  28. Vocks, C., Mann, G.: 2003, Astrophys. J. 593, 1134. ADSCrossRefGoogle Scholar
  29. Vocks, C., Mann, G.: 2009, Astron. Astrophys. 502, 325. ADSCrossRefMATHGoogle Scholar
  30. Voitenko, Y., Goossens, M.: 2006, Space Sci. Rev. 122, 255. ADSCrossRefGoogle Scholar
  31. Voitenko, Y., Pierrard, V.: 2012, Solar Phys. doi:10.1007/s11207-013-0296-6. Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Solar-Terrestrial Centre of Excellence, Space PhysicsBelgian Institute for Space AeronomyBrusselsBelgium
  2. 2.Georges Lemaître Centre for Earth and Climate Research (TECLIM)Université Catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations