Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Observational Evidence for a Double-Helix Structure in CMEs and Magnetic Clouds

  • 216 Accesses

  • 4 Citations

Abstract

We compare recent observations of a solar eruptive prominence as seen in extreme-UV light on 30 March 2010 by the Solar Dynamics Observatory (SDO) with the multi-tube model for interplanetary magnetic clouds (Osherovich, Fainberg, Stone, Geophys. Res. Lett. 26, 2597, 1999). Our model is based on an exact analytical solution of the plasma equilibrium with magnetic force balanced by a gradient of scalar gas pressure. Topologically, this solution describes two magnetic helices with opposite magnetic polarity embedded in a cylindrical magnetic flux tube that creates magnetic flux inequality between the two helices by enhancing one helix and suppressing the other. The magnetic field in this model is continuous everywhere and has a finite magnetic energy per unit length of the tube. These configurations have been introduced as MHD bounded states (Osherovich, Soln. Dannye 5, 70, 1975). Apparently, the SDO observations depict two non-equal magnetically interacting helices described by this analytical model. We consider magnetic and thermodynamic signatures of multiple magnetic flux ropes inside the same magnetic cloud, using in situ observations. The ratio of magnetic energy density to bulk speed solar wind energy density has been defined as a solar wind quasi-invariant (QI). We analyze the structure of the QI profile to probe the topology of the internal structure of magnetic clouds. From the superposition of 12 magnetically isolated clouds observed by Ulysses, we have found that the corresponding QI is consistent with our double helix model.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Berdichevsky, D., Lepping, R.P., Farrugia, C.J.: 2003, Phys. Rev. E 67, 036405.

  2. Burlaga, L.F., Sittler, E., Mariani, F., Schwenn, R.: 1981, J. Geophys. Res. 86, 6673.

  3. Chandrasekhar, S., Prendergast, K.H.: 1956, Proc. Natl. Acad. Sci. USA 42(1), 5.

  4. Fainberg, J., Osherovich, V.A., Stone, R.G., MacDowall, R.J., Balogh, A.: 1996, In: Winterhalter, D., Gosling, J.T., Habbal, S.R., Kurth, W.S., Neugebauer, M. (eds.) Proc. Solar Wind Eight Conference 382, 554.

  5. Farrugia, C.J., Osherovich, V.A., Burlaga, L.F.: 1995, J. Geophys. Res. 100, 12293.

  6. Gliner, E.B.: 1984, Astrophys. J. 283, 363.

  7. Gliner, E.B., Osherovich, V.A.: 1995, Solar Phys. 156, 95.

  8. Hu, Q., Smith, W., Ness, N.F., Skoug, R.M.: 2003, Geophys. Res. Lett. 30, 1385.

  9. Johnson, J., Oberman, C., Kulsrud, R., Frieman, E.: 1958, In: Proc. Int. Conf. Peaceful Uses of Atomic Energy, Geneva, Switzerland, 1875.

  10. Krat, K.A., Osherovich, V.A.: 1976, Solar Phys. 50, 65.

  11. Krat, K.A., Osherovich, V.A.: 1978, Solar Phys. 59, 43.

  12. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., et al.: 2012, Solar Phys. 275, 17. doi: 10.1007/s11207-011-9776-8 .

  13. Lepping, R.P., Jones, J.A., Burlaga, L.F.: 1990, J. Geophys. Res. 95, 11957.

  14. Marubashi, K.: 1996, In: Solar Wind Eight Conf., AIP Conf. Proc. 382, 522.

  15. Nieves-Chinchilla, T., Viñas, A.F.: 2008, J. Geophys. Res. 113, A02105.

  16. Osherovich, V.A.: 1975, Soln. Dannye 5, 70.

  17. Osherovich, V.A.: 1982a, Solar Phys. 77, 63.

  18. Osherovich, V.A.: 1982b, Astrophys. Space Sci. 86(2), 453.

  19. Osherovich, V.A.: 1985, Astrophys. J. 297, 314.

  20. Osherovich, V.A.: 1989, Astrophys. J. 336, 1041.

  21. Osherovich, V.A.: 1998, In: Chang, T. (ed.) Cambridge Symposium on Multiscale Phenomena II in Space Plasmas, Cambridge, 265.

  22. Osherovich, V.A., Benson, R.F., Fainberg, J.: 2005, IEEE Trans. Plasma Sci. 33(2), 599.

  23. Osherovich, V.A., Burlaga, L.F.: 1997, In: Crooker, N., Joselyn, J.A., Feynman, J. (eds.) Coronal Mass Ejections, AGU Geophys. Monogr. 99, 157.

  24. Osherovich, V.A., Fainberg, J., Stone, R.G.: 1999, Geophys. Res. Lett. 26, 2597.

  25. Osherovich, V.A., Farrugia, C.J., Burlaga, L.F.: 1993, Adv. Space Res. 13(6), 57.

  26. Osherovich, V.A., Lawrence, J.K.: 1983, Solar Phys. 88, 117.

  27. Osherovich, V.A., Farrugia, C.J., Burlaga, L.F., Lepping, R.P., Fainberg, J., Stone, R.G.: 1993, J. Geophys. Res. 98, 15331.

  28. Osherovich, V.A., Fainberg, J., Viñas, A.F., Fitzenreiter, R.: 2002, In: Solar Wind Ten Conf, AIP Conf. Proc. 679, 733.

  29. Osherovich, V.A., Benson, R.F., Fainberg, J., Green, J.L., Garcia, L., Boardsen, S., Tsyganenko, N., Reinisch, B.W.: 2007, J. Geophys. Res. 112, A06247.

  30. Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, Solar Phys. 275, 3 – 15. doi: 10.1007/s11207-011-9841-3 .

  31. Richardson, I.G., Cane, H.V.: 2010, Solar Phys. 264, 189.

  32. Scudder, J.D.: 1992, Astrophys. J. 398, 299.

  33. Shimazu, H., Vandas, M.: 2002, Earth Planets Space 54, 783.

  34. Sittler, E., Burlaga, L.F.: 1998, J. Geophys. Res. 103(A8), 17477.

  35. Stone, R.G., MacDowall, R.J., Fainberg, J., Hoang, S., Kaiser, M.L., Kellogg, P.J., et al.: 1995, Science 268(5213), 1026.

  36. Vandas, M., Fischer, S., Geranios, A.: 1999, In: Solar Wind Nine Conf., AIP Conf. Proc. 471, 127.

  37. Webb, A., Fainberg, J., Osherovich, V.: 2012, Solar Phys. 277, 375.

  38. Woolley, M.I.: 1975, J. Plasma Phys. 14, 305.

Download references

Acknowledgements

The authors appreciate the invitation of Teresa Nieves-Chinchilla to participate in this special issue of Solar Physics devoted to magnetic flux rope research. The constructive suggestions of the referee have been incorporated in the paper.

Author information

Correspondence to Joseph Fainberg.

Additional information

Joseph Fainberg is Emeritus at NASA Goddard Space Flight Center.

Flux-Rope Structure of Coronal Mass Ejections

Guest Editors: N. Gopalswamy, T. Nieves-Chinchilla, M. Hidalgo, J. Zhang, and P. Riley

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Osherovich, V., Fainberg, J. & Webb, A. Observational Evidence for a Double-Helix Structure in CMEs and Magnetic Clouds. Sol Phys 284, 261–274 (2013). https://doi.org/10.1007/s11207-013-0278-8

Download citation

Keywords

  • Quasi-invariant
  • Solar wind
  • Magnetic clouds
  • Coronal mass ejections