Solar Physics

, Volume 286, Issue 2, pp 609–627 | Cite as

A Phenomenological Study of the Cosmic Ray Variations over the Past 9400 Years, and Their Implications Regarding Solar Activity and the Solar Dynamo

  • K. G. McCrackenEmail author
  • J. Beer
  • F. Steinhilber
  • J. Abreu


Two 9400-year long 10Be data records from the Arctic and Antarctic and a 14C record of equal length were used to investigate the periodicities in the cosmic radiation incident on Earth throughout the past 9400 years. Fifteen significant periodicities between 40 and 2320 years are observed in the 10Be and 14C records, there being close agreement between the periodicities in each record. We found that the periodic variations in the galactic cosmic radiation are the primary cause for periods < 250 years, with minor contributions of terrestrial origin possible > 250 years. The spectral line for the Gleissberg (87-year) periodicity is narrow, indicating a stability of ≈ 0.5 %. The 9400-year record contains 26 Grand Minima (GM) similar to the Maunder Minimum, most of which occurred as sequences of 2 – 7 GM with intervals of 800 – 1200 years in between, in which there were no GM. The intervals between the GM sequences are characterised by high values of the modulation function. Periodicities < 150 years are observed in both the GM intervals and the intervals in between. The longer-period variations such as the de Vries (208-year) cycle have high amplitudes during the GM sequences and are undetectable in between. There are three harmonically related pairs of periodicities (65 and 130 years), (75 and 150 years), and (104 and 208 years). The long periodicities at 350, 510, and 708 years closely approximate 4, 6, and 8 times the Gleissberg period (87 years). The well-established properties of cosmic-ray modulation theory and the known dependence of the heliospheric magnetic field on the solar magnetic fields lead us to speculate that the periodicities evident in the paleo-cosmic-ray record are also present in the solar magnetic fields and in the solar dynamo. The stable, narrow natures of the Gleissberg and other periodicities suggest that there is a strong “frequency control” in the solar dynamo, in strong contrast to the variable nature (8 – 15 years) of the Schwabe (11-year) solar cycle.


Cosmic-rays Cosmic-ray modulation Cosmogenic 10Be and 14Solar periodicities Grand Minima Solar dynamo 



The research at the University of Maryland was supported by NSF grant 1050002. The Swiss component of this research was supported by NCCR Climate – Swiss climate research and by the Swiss National Science Foundation under grant CRSI122-130642 (FUPSOL). Support of KGMcC by the International Space Science Institute (ISSI) is gratefully acknowledged.


  1. Abreu, J.A., Beer, J., Steinhilber, F., Christl, M., Kubik, P.W.: 2012a, 10Be in ice cores and 14C in tree rings: separation of production and climate effects. Space Sci. Rev. 1 – 7. doi: 10.1007/s11214-011-9864-y.
  2. Abreu, J.A., Beer, J., Ferriz-Mas, A., McCracken, K.G., Steinhilber, F.: 2012b, Planetary influence on solar activity evidenced by cosmogenic nuclides. Astron. Astrophys. 548, A88. doi: 10.105I/0004-6361/201219997. ADSCrossRefGoogle Scholar
  3. Beer, J., McCracken, K.G., Abreu, J., Heikkila, U., Steinhilber, F.: 2011, Cosmogenic radionuclides as an extension of the neutron-monitor era into the past: potential and limitations. Space Sci. Rev. doi: 10.1007/s11214-011-9843-3. Google Scholar
  4. Beer, J., McCracken, K., von Steiger, R.: 2012, Cosmogenic Radionuclides: Theory and Applications in the Terrestrial and Space Environments, Springer, Berlin. ISBN 978-3-642-14650-3. CrossRefGoogle Scholar
  5. Caballero-Lopez, R.A., Moraal, H.: 2004, Limitations of the force field equation to describe cosmic-ray modulation. J. Geophys. Res. 109, A01101. doi: 10.1029/2003JA010098. ADSCrossRefGoogle Scholar
  6. Charbonneau, P.: 2010, Dynamo models of the solar cycle. Living Rev. Solar Phys. 7(3).
  7. Dicke, D.H.: 1978, Is there a chronometer hidden deep in the Sun? Nature 276, 676 – 680. ADSCrossRefGoogle Scholar
  8. Forbush, S.E.: 1938, On world-wide changes in cosmic-ray intensity. Phys. Rev. 54(12), 975 – 988. ADSCrossRefGoogle Scholar
  9. Forbush, S.E.: 1954, World-wide cosmic-ray variations, 1937 – 1952. J. Geophys. Res. 59, 525 – 542. ADSCrossRefGoogle Scholar
  10. Gleeson, L.J., Axford, W.I.: 1968, Solar modulation of galactic cosmic-rays. Astrophys. J. 154, 1011 – 1026. ADSCrossRefGoogle Scholar
  11. Gleissberg, W.: 1958, The eighty-year sunspot cycle. J. Br. Astron. Assoc. 68, 148 – 152. Google Scholar
  12. Gleissberg, W.: 1965, The eighty-year solar cycle in auroral frequency numbers. J. Br. Astron. Assoc. 75, 227 – 231. Google Scholar
  13. Heikkila, U., Beer, J., Feichter, J.: 2008, Modeling cosmogenic radionuclides 10Be and 7Be during the Maunder minimum using the ECHAM5-HAM general circulation. Model. Atmos. Chem. Phys. 8, 2797 – 2809. ADSCrossRefGoogle Scholar
  14. Jokipii, J.R.: 1991, Variations of the cosmic-ray flux with time. In: Sonett, C.P., Giampapa, H.S., Mathews, M.S. (eds.) The Sun in Time, Univ. Ariz. Press, Tucson, 205 – 220. Google Scholar
  15. Jose, P.D.: 1965, Sun’s motion and sunspots. Astron. J. 70, 193 – 200. ADSCrossRefGoogle Scholar
  16. Knudsen, M.F, Riisager, P., Donadini, D., Snowball, I., Muscheler, R., Korhonen, B., Pesonen, L.J.: 2008, Variations in the geomagnetic dipole moment during the Holocene and the past 50 kyr. Earth Planet. Sci. Lett. 272, 319 – 329. doi: 10.1016/j.epsl.2008.04.048. ADSCrossRefGoogle Scholar
  17. Knudsen, M.F., Riisager, P., Holm Jacobsen, B., Muscheler, R., Snowball, I., Seidenkrantz, M.S.: 2009, Taking the pulse of the Sun during the Holocene by joint analysis of 14C and 10Be. Geophys. Res. Lett. 36, L16701. doi: 10.1029/2009GL039439. ADSCrossRefGoogle Scholar
  18. Lal, D.: 1987, 10Be in polar ice: data reflect changes in cosmic-ray flux or polar meteorology. Geophys. Res. Lett. 14, 785 – 788. ADSCrossRefGoogle Scholar
  19. Lockwood, M., Stamper, R., Wild, M.N.: 1999, A doubling of the Sun’s coronal magnetic field during the past 100 years. Nature 399, 437 – 439. ADSCrossRefGoogle Scholar
  20. Masarik, J., Beer, J.: 1999, Simulation of particle fluxes and cosmogenic nuclide production in the Earth’s atmosphere. J. Geophys. Res. 104, 12099 – 12111. ADSCrossRefGoogle Scholar
  21. Masarik, J., Beer, J.: 2009, An updated simulation of particle fluxes and cosmogenic production in the Earth’s atmosphere. J. Geophys. Res. 114, D11103. ADSCrossRefGoogle Scholar
  22. McCracken, K.G.: 2004, Geomagnetic and atmospheric effects upon the cosmogenic 10Be observed in polar ice. J. Geophys. Res. 109, A04101. doi: 10.1029/2003JA010060. ADSCrossRefGoogle Scholar
  23. McCracken, K.G., Beer, J.: 2007, Long term changes in the cosmic-ray intensity at Earth, 1428 – 2005. J. Geophys. Res. 112, A10101. doi: 10.1029/2006JA012117. ADSCrossRefGoogle Scholar
  24. McCracken, K., Beer, J., Steinhilber, F.: 2013, Evidence for planetary forcing of the cosmic ray intensity, and solar activity throughout the past 9400 years. Solar Phys. submitted Google Scholar
  25. McCracken, K.G., McDonald, F.B., Beer, J., Raisbeck, G., Yiou, F.: 2004, A phenomenological study of the long-term cosmic-ray modulation, 850 – 1950 AD. J. Geophys. Res. 109, A12103. doi: 10.1029/2004JA010685. ADSCrossRefGoogle Scholar
  26. McCracken, K., Beer, J., Steinhilber, F., Abreu, J.: 2011, The heliosphere in time. Space Sci. Rev. doi: 10:1007/s11214-011-9843-3. zbMATHGoogle Scholar
  27. Muscheler, R., Beer, J., Wagner, G., Laj, C., Kissel, C., Raisbeck, G.M., Yiou, F., Kubik, P.W.: 2004, Changes in the carbon cycle during the last deglaciation as indicated by the comparison of 10Be and 14C records. Earth Planet. Sci. Lett. 219, 325 – 340. ADSCrossRefGoogle Scholar
  28. Parker, E.N.: 1958, Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128(3), 664 – 676. ADSCrossRefGoogle Scholar
  29. Parker, E.N.: 1965, The passage of energetic particles through interplanetary space. Planet. Space Sci. 13, 9 – 13. ADSCrossRefGoogle Scholar
  30. Peristykh, A.N., Damon, P.E.: 2003, Persistence of the Gleissberg 88-year solar cycle over the past ∼ 12 000 years: evidence from cosmogenic isotopes. J. Geophys. Res. 108(A1), SSH 1-1. doi: 10.1029/2002JA009390. CrossRefGoogle Scholar
  31. Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., Weyhenmeye, C.E.: 2009, Intcal09 and Marine09 radiocarbon age calibration curves, 0 – 50 000 years Cal Bp. Radiocarbon 51, 1111 – 1150. Google Scholar
  32. Snowball, I., Muscheler, R.: 2007, Paleomagnetic intensity data: an Achilles heel of solar activity reconstructions. Holocene 17, 851 – 859. doi: 10.1177/0959683607080531. CrossRefGoogle Scholar
  33. Sonett, C.P.: 1984, Very long solar periods and the radiocarbon record. Rev. Geophys. 22, 239 – 254. ADSCrossRefGoogle Scholar
  34. Steinhilber, F., Abreu, J.A., Beer, J.: 2008. Solar modulation during the Holocene. Astrophys. Space Sci. Trans.. 4, 1 – 6. ADSCrossRefGoogle Scholar
  35. Steinhilber, F., Abreu, J.A., Beer, J., McCracken, K.G.: 2010, The interplanetary magnetic field during the past 9300 years inferred from cosmogenic radionuclides. J. Geophys. Res. 115, A01104. doi: 10.1029/2009JA014193. ADSCrossRefGoogle Scholar
  36. Steinhilber, F., Abreu, J.A., Beer, J., Brunner, I., Christl, M., Fischer, H., Heikkilä, U., Kubik, P.W., Mann, M., McCracken, K.G., Miller, H., Miyahara, H., Oerter, H., Wilhelms, H.: 2012, 9400 years of cosmic radiation and solar activity from ice cores and tree rings. Proc. Natl. Acad. Sci. USA 109. doi: 10.1073/pnas1118965109.
  37. Svalgaard, L., Cliver, E.W.: 2010, Heliospheric magnetic field, 1835 – 2009. J. Geophys. Res. 115, A09111. doi: 10.1029/2009JA015069. ADSCrossRefGoogle Scholar
  38. Usoskin, I.G., Mursala, K., Kovaltsov, G.A.: 2001, Heliospheric modulation of cosmic-rays and solar activity during the Maunder Minimum. J. Geophys. Res. 106, 16039 – 16046. ADSCrossRefGoogle Scholar
  39. Usoskin, I.G., Solanki, S.K., Taricco, C., Bhandari, N., Kovaltsov, G.A.: 2006, Long-term solar activity reconstructions: direct test by cosmogenic 44Ti in meteorites. Astron. Astrophys. 457, L25 – L28. ADSCrossRefGoogle Scholar
  40. Webber, W.R., Higbie, P.R.: 2010, A comparison of new calculations of 10Be production in the Earth’s polar atmosphere by cosmic-rays with 10Be concentration measurements in polar ice cores between 1939 and 2005 – A troubling lack of concordance, paper 1. arXiv:1003.4989.
  41. Webber, W.R., Higbie, P.R., Webber, C.W.: 2010, A comparison of new calculations of the yearly 10Be production in the Earth’s polar atmosphere by cosmic rays with yearly 10Be measurements in multiple Greenland ice cores between 1939 and 1994 – A troubling lack of concordance, paper 2. arXiv:1004.2675.

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • K. G. McCracken
    • 1
    Email author
  • J. Beer
    • 2
  • F. Steinhilber
    • 2
  • J. Abreu
    • 2
  1. 1.Institute for Physical Sciences and TechnologyUniversity of MarylandCollege ParkUSA
  2. 2.EawagDübendorfSwitzerland

Personalised recommendations