Solar Physics

, Volume 285, Issue 1–2, pp 317–348 | Cite as

Heliospheric Imaging of 3D Density Structures During the Multiple Coronal Mass Ejections of Late July to Early August 2010

  • D. F. WebbEmail author
  • C. Möstl
  • B. V. Jackson
  • M. M. Bisi
  • T. A. Howard
  • T. Mulligan
  • E. A. Jensen
  • L. K. Jian
  • J. A. Davies
  • C. A. de Koning
  • Y. Liu
  • M. Temmer
  • J. M. Clover
  • C. J. Farrugia
  • R. A. Harrison
  • N. Nitta
  • D. Odstrcil
  • S. J. Tappin
  • H.-S. Yu
Observations and Modelling of the Inner Heliosphere


It is usually difficult to gain a consistent global understanding of a coronal mass ejection (CME) eruption and its propagation when only near-Sun imagery and the local measurements derived from single-spacecraft observations are available. Three-dimensional (3D) density reconstructions based on heliospheric imaging allow us to “fill in” the temporal and spatial gaps between the near-Sun and in situ data to provide a truly global picture of the propagation and interactions of the CME as it moves through the inner heliosphere. In recent years the heliospheric propagation of dense structures has been observed and measured by the heliospheric imagers of the Solar Mass Ejection Imager (SMEI) and on the twin Solar TErrestrial RElations Observatory (STEREO) spacecraft. We describe the use of several 3D reconstruction techniques based on these heliospheric imaging data sets to distinguish and track the propagation of multiple CMEs in the inner heliosphere during the very active period of solar activity in late July – early August 2010. We employ 3D reconstruction techniques used at the University of California, San Diego (UCSD) based on a kinematic solar wind model, and also the empirical Tappin–Howard model. We compare our results with those from other studies of this active period, in particular the heliospheric simulations made with the ENLIL model by Odstrcil et al. (J. Geophys. Res., 2013) and the in situ results from multiple spacecraft provided by Möstl et al. (Astrophys. J. 758, 10 – 28, 2012). We find that the SMEI results in particular provide an overall context for the multiple-density flows associated with these CMEs. For the first time we are able to intercompare the 3D reconstructed densities with the timing and magnitude of in situ density structures at five spacecraft spread over 150° in ecliptic longitude and from 0.4 to 1 AU in radial distance. We also model the magnetic flux-rope structures at three spacecraft using both force-free and non-force-free modelling, and compare their timing and spatial structure with the reconstructed density flows.


Solar Wind Coronal Mass Ejection Flux Rope Ecliptic Plane Stereo Spacecraft 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge the organisers of and the beneficial discussions at the three August 2010 events workshops, held in January 2011 in Abingdon, England, March 2011 in Graz, Austria, and June 2011 in Aberystwyth, Wales, which were vital in producing this paper. The Solar Mass Ejection Imager (SMEI) instrument is a collaborative project of the U.S. Air Force Research Laboratory, NASA, the University of California at San Diego, the University of Birmingham, UK, Boston College, and Boston University. The STEREO SECCHI Heliospheric Imager (HI) instrument was developed by a collaboration that included the Rutherford Appleton Laboratory and the University of Birmingham, both in the United Kingdom, the Centre Spatial de Liège (CSL), Belgium, and the US Naval Research Laboratory (NRL), Washington DC, USA. The SECCHI project is an international consortium of the Naval Research Laboratory, Lockheed Martin Solar and Astrophysics Lab, NASA Goddard Space Flight Center, Rutherford Appleton Laboratory, University of Birmingham, Max-Planck-Institut für Sonnensystemforschung, Centre Spatial de Liège, Institut d’Optique Théorique et Appliquée, and Institut d’Astrophysique Spatiale. We also benefited from data from the SOHO mission, which is an international collaboration between NASA and ESA, and also from the SOHO/LASCO CME catalog, generated and maintained by the Center for Solar Physics and Space Weather, The Catholic University of America in cooperation with NRL and NASA. The work of DFW was supported at Boston College by Air Force contracts AF19628-00-K-0073 and FA8718-04-C-0006 and Navy contracts N00173-07-1-G016 and N00173-10-1-G001. The work of CM was supported by the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 263252 (COMESEP), and by a Marie Curie International Outgoing Fellowship within the 7th European Community Framework Programme. MT acknowledges the Austrian Science Fund (FWF): FWF V195-N16. BVJ, JMC, and H-SY were supported by UCSD NSF grants ATM-0852246 and AGS-1053766, NASA grant NNX11AB50G, and AFOSR grant 11NE043. MMB acknowledges support on these analyses from UCSD NSF grant ATM-0925023, and also from a UK STFC Standard Grant to Aberystwyth University for continued CME and heliospheric interplanetary scintillation (IPS) and white-light analyses. TAH was partially supported by the NSF/SHINE Competition (Award 0849916) and the NASA Heliophysics program (grant NNX10AC05G). CJF was supported by NASA grant NX10AQ29G and NSF grant AGS-1140211.

Supplementary material

(MPEG 14.6 MB)

11207_2013_260_MOESM2_ESM.gif (1012 kb)
(GIF 1012 kB)
11207_2013_260_MOESM3_ESM.gif (1.7 mb)
(GIF 1.7 MB)


  1. Anderson, B.J., Acuña, M.H., Lohr, D.A., Scheifele, J., Raval, A., Korth, H., Slavin, J.A.: 2007, Space Sci. Rev. 131, 417. ADSCrossRefGoogle Scholar
  2. Bisi, M.M., Jackson, B.V., Hick, P.P., Buffington, A., Odstrcil, D., Clover, J.M.: 2008, J. Geophys. Res. 113, A00A11. doi: 10.1029/2008JA013222. ADSCrossRefGoogle Scholar
  3. Burlaga, L.F.: 1988, J. Geophys. Res. 93, 7217. ADSCrossRefGoogle Scholar
  4. Burlaga, L., Sittler, E., Mariani, F., Schwenn, R.: 1981, J. Geophys. Res. 86, 6673. ADSCrossRefGoogle Scholar
  5. Crooker, N.U., Siscoe, G.L., Shodan, S., Webb, D.F., Gosling, J.T., Smith, E.J.: 1993, J. Geophys. Res. 98, 9371. ADSCrossRefGoogle Scholar
  6. Davies, J.A., Harrison, R.A., Rouillard, A.P., Sheeley, N.R., Perry, C.H., Bewsher, D., et al.: 2009, Geophys. Res. Lett. 36, L02102. ADSCrossRefGoogle Scholar
  7. Davis, C.J., Davies, J.A., Lockwood, M., Rouillard, A.P., Eyles, C.J., Harrison, R.A.: 2009, Geophys. Res. Lett. 36, L08102. ADSCrossRefGoogle Scholar
  8. de Koning, C.A., Pizzo, V.J., Biesecker, D.A.: 2009, Solar Phys. 256, 167. ADSCrossRefGoogle Scholar
  9. Domingue, D.L., Russell, C.T. (eds.): 2007, The MESSENGER Mission to Mercury, Space Sci. Rev. 131, Springer, Netherlands, 624 pp. Google Scholar
  10. Eyles, C.J., Simnett, G.M., Cooke, M.P., Jackson, B.V., Buffington, A., Hick, P.P., Waltham, N.R., King, J.M., Anderson, P.A., Holladay, P.E.: 2003, Solar Phys. 217, 319. ADSCrossRefGoogle Scholar
  11. Eyles, C.J., Harrison, R.A., Davis, C.J., Waltham, N.R., Shaughnessy, B.M., Mapson-Menard, H.C.A., et al.: 2009, Solar Phys. 254, 387. ADSCrossRefGoogle Scholar
  12. Harrison, R.A., Davies, J.A., Möstl, C., Liu, Y., Temmer, M., Bisi, M.M., et al.: 2012, Astrophys. J. 750, 45. ADSCrossRefGoogle Scholar
  13. Howard, T.A.: 2011, J. Atmos. Solar-Terr. Phys. 73, 1242. ADSCrossRefGoogle Scholar
  14. Howard, T.A., Tappin, S.J.: 2009, Space Sci. Rev. 147, 89. doi: 10.1007/s11214-009-9577-7. ADSCrossRefGoogle Scholar
  15. Howard, T.A., Tappin, S.J.: 2010, Space Weather 8, S07004. doi: 10.1029/2009SW000531. ADSCrossRefGoogle Scholar
  16. Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., et al.: 2008, Space Sci. Rev. 136, 67. ADSCrossRefGoogle Scholar
  17. Hu, Q., Sonnerup, B.U.O.: 2002, J. Geophys. Res. 107(A7), 1142. doi: 10.1029/2001JA000293. CrossRefGoogle Scholar
  18. Hu, Q., Smith, C.W., Ness, N.F., Skoug, R.M.: 2004, J. Geophys. Res. 109, 3102. CrossRefGoogle Scholar
  19. Hundhausen, A.J.: 1993, J. Geophys. Res. 98(A8), 13177. ADSCrossRefGoogle Scholar
  20. Jackson, B.V., Buffington, A., Hick, P.P., Altrock, R.C., Figueroa, S., Holladay, P.E., et al.: 2004, Solar Phys. 225, 177. ADSCrossRefGoogle Scholar
  21. Jackson, B.V., Buffington, A., Hick, P.P., Wang, X., Webb, D.: 2006, J. Geophys. Res. 111, A04S91. doi: 10.1029/2004JA010942. ADSCrossRefGoogle Scholar
  22. Jackson, B.V., Buffington, A., Hick, P.P., Clover, J.M., Bisi, M.M., Webb, D.F.: 2010a, Astrophys. J. 724, 829. ADSCrossRefGoogle Scholar
  23. Jackson, B.V., Hick, P.P., Buffington, A., Bisi, M.M., Clover, J.M.: 2010b, Adv. Geosci. 21, 339. Google Scholar
  24. Jackson, B.V., Hick, P.P., Buffington, A., Bisi, M.M., Clover, J.M., Tokumaru, M., Kojima, M., Fujiki, K.: 2011, J. Atmos. Solar-Terr. Phys. 73(10), 1214. doi: 10.1016/j.jastp.2010.11.023. ADSCrossRefGoogle Scholar
  25. Kahler, S.W., Webb, D.F.: 2007, J. Geophys. Res. 112, A09103. doi: 10.1029/2007JA012358. ADSCrossRefGoogle Scholar
  26. Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, Solar Phys. 247(1), 171. CrossRefGoogle Scholar
  27. Krall, J., St. Cyr, O.C.: 2006, Astrophys. J. 652, 1740. ADSCrossRefGoogle Scholar
  28. Lepping, R.P., Acũna, M.H., Burlaga, L.F., Farrell, W.M., Slavin, J.A., Schatten, K.H., et al.: 1995, Space Sci. Rev. 71, 207. ADSCrossRefGoogle Scholar
  29. Li, T., Zhang, J., Zhang, Y., Yang, S.: 2011, Astrophys. J. 739, 43. ADSCrossRefGoogle Scholar
  30. Liu, Y., Davies, J.A., Luhmann, J.G., Vourlidas, A., Bale, S.D., Lin, R.P.: 2010a, Astrophys. J. Lett. 710, L82. ADSCrossRefGoogle Scholar
  31. Liu, Y., Thernisien, A., Luhmann, J.G., Vourlidas, A., Davies, J.A., Lin, R.P., Bale, S.D.: 2010b, Astrophys. J. 722, 1762. ADSCrossRefGoogle Scholar
  32. Liu, R., Liu, C., Wang, S., Deng, N., Wang, H.: 2010c, Astrophys. J. 725, L84. ADSCrossRefGoogle Scholar
  33. Liu, Y., Luhmann, J.G., Bale, S.D., Lin, R.P.: 2011, Astrophys. J. 734, 84. ADSCrossRefGoogle Scholar
  34. Liu, Y., Luhmann, J.G., Möstl, C., Martinez-Oliveros, J.C., Bale, S.D., Lin, R.P., Harrison, R.A., Temmer, M., Webb, D.F., Odstrcil, D.: 2012, Astrophys. J. 746, L15. ADSCrossRefGoogle Scholar
  35. Lugaz, N., Vourlidas, A., Roussev, I.I.: 2009, Ann. Geophys. 27, 3479. ADSCrossRefGoogle Scholar
  36. Lugaz, N., Hernandez-Charpak, J.N., Roussev, I.I., Davis, C.J., Vourlidas, A., Davies, J.A.: 2010, Astrophys. J. 715, 493. ADSCrossRefGoogle Scholar
  37. Martinez Oliveros, J.C., Raftery, C.L., Bain, H.M., Liu, Y., Krupar, V., Bale, S., Krucker, S.: 2012, Astrophys. J. 748, 66. ADSCrossRefGoogle Scholar
  38. Mierla, M., Inhester, B., Antunes, A., Boursier, Y., Byrne, J.P., Colaninno, R., et al.: 2010, Ann. Geophys. 28, 203. ADSCrossRefGoogle Scholar
  39. Möstl, C., Farrugia, C.J., Biernat, H.K., Leitner, M., Kilpua, E.K.J., Galvin, A.B., Luhmann, J.G.: 2009a, Solar Phys. 256, 427. ADSCrossRefGoogle Scholar
  40. Möstl, C., Farrugia, C.J., Miklenic, C., Temmer, M., Galvin, A.B., Luhmann, J.G., et al.: 2009b, J. Geophys. Res. 114, 4102. CrossRefGoogle Scholar
  41. Möstl, C., Farrugia, C.J., Temmer, M., Miklenic, C., Veronig, A.M., Galvin, A.B., Leitner, M., Biernat, H.K.: 2009c, Astrophys. J. Lett. 705, L180. ADSCrossRefGoogle Scholar
  42. Möstl, C., Temmer, M., Rollett, T., Farrugia, C.J., Liu, Y., Veronig, A.M., Leitner, M., Galvin, A.B., Biernat, H.K.: 2010, Geophys. Res. Lett. 37, L24103. ADSCrossRefGoogle Scholar
  43. Möstl, C., Farrugia, C.J., Kilpua, E.K.J., Jian, L., Liu, Y., Eastwood, J., et al.: 2012, Astrophys. J. 758, 10. ADSCrossRefGoogle Scholar
  44. Mulligan, T.L.: 2002, The structure of interplanetary coronal mass ejections and their solar origins. PhD Thesis, UCLA. Google Scholar
  45. Odstrcil, D., Pizzo, V.J., Arge, C.N.: 2005, J. Geophys. Res. 110, A02106. doi: 10.1029/2004JA010745. ADSCrossRefGoogle Scholar
  46. Odstrcil, D., Xie, H., de Koning, C.A., Rouillard, A.P., Möstl, C., Temmer, M., et al.: 2013, J. Geophys. Res. submitted. Google Scholar
  47. Ogilvie, K.W., Chornay, D.J., Fritzenreiter, R.J., Hunsaker, F., Keller, J., Lobell, J., et al.: 1995, Space Sci. Rev. 71, 55. ADSCrossRefGoogle Scholar
  48. Pizzo, V.J., Biesecker, D.A.: 2004, Geophys. Res. Lett. 31, L21802. doi: 10.1029/2004GL021141. ADSCrossRefGoogle Scholar
  49. Rouillard, A.P.: 2011, J. Atmos. Solar-Terr. Phys. 73, 1201. ADSCrossRefGoogle Scholar
  50. Rouillard, A.P., Davies, J.A., Forsyth, R.J., Rees, A., Davis, C.J., Harrison, R.A., et al.: 2008, Geophys. Res. Lett. 35, L10110. doi: 10.1029/2008GL033767. ADSCrossRefGoogle Scholar
  51. Schrijver, C.J., Title, A.M.: 2011, J. Geophys. Res. 116, A04108. ADSCrossRefGoogle Scholar
  52. Sheeley, N.R. Jr., Walters, J.H., Wang, Y.M., Howard, R.A.: 1999, J. Geophys. Res. 104, 24739 – 24768. ADSCrossRefGoogle Scholar
  53. Tappin, S.J., Howard, T.A.: 2009a, Space Sci. Rev. 147, 55. ADSCrossRefGoogle Scholar
  54. Tappin, S.J., Howard, T.A.: 2009b, Astrophys. J. 702, 862. doi: 10.1088/0004-637X/702. ADSCrossRefGoogle Scholar
  55. Temmer, M., Vrsnak, B., Rollett, T., Bein, B., de Koning, C.A., Liu, Y., Bosman, E., Davies, J.A., Möstl, C., Zic, T., Veronig, A.M., Bothmer, V., Harrison, R., Nitta, N., Bisi, M., Flor, O., Eastwood, J., Odstrcil, D., Forsyth, R.: 2012, Astrophys. J. 749, 57. ADSCrossRefGoogle Scholar
  56. Török, T., Panasenco, O., Titov, V.S., Mikić, Z., Reeves, K.K., Velli, M., Linker, J.A., De Toma, G.: 2011, Astrophys. J. Lett. 739, L63. ADSCrossRefGoogle Scholar
  57. Vourlidas, A., Howard, R.A.: 2006, Astrophys. J. 642, 1216. ADSCrossRefGoogle Scholar
  58. Wood, B.E., Howard, R.A.: 2009, Astrophys. J. 702, 901. ADSCrossRefGoogle Scholar
  59. Wood, B.E., Howard, R.A., Socker, D.G.: 2010, Astrophys. J. 715, 1524. ADSCrossRefGoogle Scholar
  60. Wu, C.-C., Dryer, M., Wu, S.T., Wood, B.E., Fry, C.D., Liou, K., Plunkett, S.: 2011, J. Geophys. Res. 116, A12103. doi: 10.1029/2011JA016947. ADSCrossRefGoogle Scholar
  61. Xie, H., St. Cyr, O.C., Gopalswamy, N., Yashiro, S., Krall, J., Kramar, M., Davila, J.: 2009, Solar Phys. 259, 143. doi: 10.1007/s11207-009-9422-x. ADSCrossRefGoogle Scholar
  62. Zhang, Y., Du, A.M., Feng, X.S., Sun, W., Fry, C.D., Deehr, C.S., Dryer, M., Zieger, B.: 2013, Solar Phys. in press. Google Scholar
  63. Zurbuchen, T.H., Richardson, I.G.: 2006, Space Sci. Rev. 123, 31. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • D. F. Webb
    • 1
    Email author
  • C. Möstl
    • 2
    • 3
  • B. V. Jackson
    • 4
  • M. M. Bisi
    • 5
  • T. A. Howard
    • 6
  • T. Mulligan
    • 7
  • E. A. Jensen
    • 8
  • L. K. Jian
    • 10
    • 9
  • J. A. Davies
    • 11
  • C. A. de Koning
    • 12
  • Y. Liu
    • 3
  • M. Temmer
    • 2
  • J. M. Clover
    • 4
  • C. J. Farrugia
    • 13
  • R. A. Harrison
    • 11
  • N. Nitta
    • 14
  • D. Odstrcil
    • 15
    • 16
  • S. J. Tappin
    • 17
  • H.-S. Yu
    • 4
  1. 1.Institute for Scientific ResearchBoston CollegeChestnut HillUSA
  2. 2.Institute of PhysicsUniversity of GrazGrazAustria
  3. 3.Space Sciences LaboratoryUniversity of CaliforniaBerkeleyUSA
  4. 4.Center for Astrophysics and Space ScienceUniversity of California, San DiegoLa JollaUSA
  5. 5.Institute of Mathematics and PhysicsAberystwyth UniversityAberystwythUK
  6. 6.Southwest Research InstituteBoulderUSA
  7. 7.Space Sciences Dept/SSALThe Aerospace CorporationLos AngelesUSA
  8. 8.ACS ConsultingHoustonUSA
  9. 9.Heliophysics Science Division, Code 672NASA Goddard Space Flight CenterGreenbeltUSA
  10. 10.Department of AstronomyUniversity of MarylandCollege ParkUSA
  11. 11.RAL SpaceHarwell OxfordDidcotEngland, UK
  12. 12.NOAA Space Weather Prediction CenterBoulderUSA
  13. 13.Space Science Center and Department of PhysicsUniversity of New HampshireDurhamUSA
  14. 14.Solar and Astrophysics LaboratoryLockheed Martin Advanced Technology CentrePalo AltoUSA
  15. 15.Department of Computational and Data SciencesGeorge Mason UniversityFairfaxUSA
  16. 16.NASA Goddard Space Flight CenterGreenbeltUSA
  17. 17.National Solar ObservatorySunspotUSA

Personalised recommendations