Advertisement

Solar Physics

, Volume 286, Issue 2, pp 529–548 | Cite as

Evidence of Kinetic Alfvén Waves in the Solar Wind at 1 AU

  • John J. Podesta
Article

Abstract

Several independent lines of observational evidence of the existence of kinetic Alfvén waves (KAWs) in the solar wind are briefly reviewed. Each piece of evidence is inconclusive when considered separately, but when taken together, it is reasonable to conclude from these observations that KAWs in the form of kinetic Alfvén turbulence are almost always present in the free-flowing solar wind near 1 AU and, by inference, perhaps throughout much of the heliosphere.

Keywords

Fluctuations Kinetic Alfvén waves Solar wind Turbulence 

Notes

Acknowledgements

The contents of this paper are based on an invited talk presented at the Solar Wind Thirteen conference held on the Big Island of Hawaii in June of 2012. This review, which covers many details not included in the talk, was motivated a few months after the meeting by personal comments from an esteemed solar wind scientist and plasma physicist whose incredulous view on the existence of KAWs in the solar wind is confuted by experimental data. I am grateful to several of my colleagues who provided valuable feedback that significantly improved this paper. This research was supported by the NASA Solar and Heliospheric Physics Program and by the NSF Shine Program.

References

  1. Alexandrova, O., Saur, J., Lacombe, C., Mangeney, A., Mitchell, J., Schwartz, S.J., Robert, P.: 2009, Universality of solar wind turbulent spectrum from MHD to electron scales. Phys. Rev. Lett. 103, 165003. doi: 10.1103/PhysRevLett.103.165003. ADSCrossRefGoogle Scholar
  2. Alexandrova, O., Saur, J., Lacombe, C., Mangeney, A., Schwartz, S.J., Mitchell, J., Grappin, R., Robert, P.: 2010, Solar wind turbulent spectrum from MHD to electron scales. In: Maksimovic, M., Issautier, K., Meyer-Vernet, N., Moncuquet, M., Pantellini, F. (eds.) Twelfth International Solar Wind Conference, AIP Conf. Proc. 1216, 144 – 147. doi: 10.1063/1.3395821. Google Scholar
  3. Bale, S.D., Kellogg, P.J., Mozer, F.S., Horbury, T.S., Reme, H.: 2005, Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence. Phys. Rev. Lett. 94, 215002. doi: 10.1103/PhysRevLett.94.215002. ADSCrossRefGoogle Scholar
  4. Behannon, K.W.: 1976, Observations of the interplanetary magnetic field between 0.46 and 1 AU by the Mariner 10 spacecraft. Ph.D. thesis, Catholic University of America, NASA-TM-X-71043. Google Scholar
  5. Beinroth, H.J., Neubauer, F.M.: 1981, Properties of whistler mode waves between 0.3 and 1.0 AU from HELIOS observations. J. Geophys. Res. 86, 7755 – 7760. doi: 10.1029/JA086iA09p07755. ADSCrossRefGoogle Scholar
  6. Belcher, J.W., Davis, L.: 1971, Large-amplitude Alfvén waves in the interplanetary medium, 2. J. Geophys. Res. 76, 3534 – 3563. doi: 10.1029/JA076i016p03534. ADSCrossRefGoogle Scholar
  7. Biskamp, D., Schwarz, E., Zeiler, A., Celani, A., Drake, J.F.: 1999, Electron magnetohydrodynamic turbulence. Phys. Plasmas 6, 751 – 758. doi: 10.1063/1.873312. MathSciNetADSCrossRefGoogle Scholar
  8. Boldyrev, S., Perez, J.C.: 2012, Spectrum of kinetic-Alfvén turbulence. Astrophys. J. Lett. 758, L44. doi: 10.1088/2041-8205/758/2/L44. ADSCrossRefGoogle Scholar
  9. Celnikier, L.M., Muschietti, L., Goldman, M.V.: 1987, Aspects of interplanetary plasma turbulence. Astron. Astrophys. 181, 138 – 154. ADSGoogle Scholar
  10. Celnikier, L.M., Harvey, C.C., Jegou, R., Moricet, P., Kemp, M.: 1983, A determination of the electron density fluctuation spectrum in the solar wind, using the ISEE propagation experiment. Astron. Astrophys. 126, 293 – 298. ADSGoogle Scholar
  11. Chandran, B.D.G.: 2010, Alfvén-wave turbulence and perpendicular ion temperatures in coronal holes. Astrophys. J. 720, 548 – 554. doi: 10.1088/0004-637X/720/1/548. ADSCrossRefGoogle Scholar
  12. Chandran, B.D.G., Quataert, E., Howes, G.G., Xia, Q., Pongkitiwanichakul, P.: 2009, Constraining low-frequency Alfvénic turbulence in the solar wind using density-fluctuation measurements. Astrophys. J. 707, 1668 – 1675. doi: 10.1088/0004-637X/707/2/1668. ADSCrossRefGoogle Scholar
  13. Chandran, B.D.G., Li, B., Rogers, B.N., Quataert, E., Germaschewski, K.: 2010, Perpendicular ion heating by low-frequency Alfvén-wave turbulence in the solar wind. Astrophys. J. 720, 503 – 515. doi: 10.1088/0004-637X/720/1/503. ADSCrossRefGoogle Scholar
  14. Chen, C.H.K., Horbury, T.S., Schekochihin, A.A., Wicks, R.T., Alexandrova, O., Mitchell, J.: 2010, Anisotropy of solar wind turbulence between ion and electron scales. Phys. Rev. Lett. 104, 255002. doi: 10.1103/PhysRevLett.104.255002. ADSCrossRefGoogle Scholar
  15. Chen, C.H.K., Salem, C.S., Bonnell, J.W., Mozer, F.S., Bale, S.D.: 2012, Density fluctuation spectrum of solar wind turbulence between ion and electron scales. Phys. Rev. Lett. 109, 035001. doi: 10.1103/PhysRevLett.109.035001. ADSCrossRefGoogle Scholar
  16. Chen, L., Lin, Z., White, R.: 2001, On resonant heating below the cyclotron frequency. Phys. Plasmas 8, 4713 – 4716. doi: 10.1063/1.1406939. ADSCrossRefGoogle Scholar
  17. Cho, J., Lazarian, A.: 2004, The anisotropy of electron magnetohydrodynamic turbulence. Astrophys. J. Lett. 615, L41 – L44. doi: 10.1086/425215. ADSCrossRefGoogle Scholar
  18. Cho, J., Lazarian, A.: 2009, Simulations of electron magnetohydrodynamic turbulence. Astrophys. J. 701, 236 – 252. doi: 10.1088/0004-637X/701/1/236. ADSCrossRefGoogle Scholar
  19. Cho, J., Vishniac, E.T.: 2000, The anisotropy of magnetohydrodynamic Alfvénic turbulence. Astrophys. J. 539, 273 – 282. doi: 10.1086/309213. ADSCrossRefGoogle Scholar
  20. Coleman, P.J. Jr.: 1967, Wave-like phenomena in the interplanetary plasma: Mariner 2. Planet. Space Sci. 15, 953 – 973. doi: 10.1016/0032-0633(67)90166-3. ADSCrossRefGoogle Scholar
  21. Coleman, P.J. Jr.: 1968, Turbulence, viscosity, and dissipation in the solar-wind plasma. Astrophys. J. 153, 371 – 388. doi: 10.1086/149674. ADSCrossRefGoogle Scholar
  22. Cornilleau-Wehrlin, N., Chanteur, G., Perraut, S., Rezeau, L., Robert, P., Roux, A., de Villedary, C., Canu, P., Maksimovic, M., de Conchy, Y., Lacombe, D.H.C., Lefeuvre, F., Parrot, M., Pinçon, J.L., Décréau, P.M.E., Harvey, C.C., Louarn, P., Santolik, O., Alleyne, H.S.C., Roth, M., Chust, T., Le Contel, O., (Staff Team): 2003, First results obtained by the cluster STAFF experiment. Ann. Geophys. 21, 437 – 456. doi: 10.5194/angeo-21-437-2003. ADSCrossRefGoogle Scholar
  23. Cranmer, S.R., van Ballegooijen, A.A.: 2003, Alfvénic turbulence in the extended solar corona: kinetic effects and proton heating. Astrophys. J. 594, 573 – 591. doi: 10.1086/376777. ADSCrossRefGoogle Scholar
  24. Denskat, K.U., Beinroth, H.J., Neubauer, F.M.: 1983, Interplanetary magnetic field power spectra with frequencies from 2.4 X 10 to the −5th HZ to 470 HZ from HELIOS-observations during solar minimum conditions. J. Geophys. 54, 60 – 67. Google Scholar
  25. Denton, R.E., Gary, S.P., Li, X., Anderson, B.J., Labelle, J.W., Lessard, M.: 1995, Low-frequency fluctuations in the magnetosheath near the magnetopause. J. Geophys. Res. 100, 5665 – 5679. doi: 10.1029/94JA03024. ADSCrossRefGoogle Scholar
  26. Forman, M.A., Wicks, R.T., Horbury, T.S.: 2011, Detailed fit of “critical balance” theory to solar wind turbulence measurements. Astrophys. J. 733, 76. doi: 10.1088/0004-637X/733/2/76. ADSCrossRefGoogle Scholar
  27. Gary, S.P.: 1986, Low-frequency waves in a high-beta collisionless plasma: polarization, compressibility, and helicity. J. Plasma Phys. 35, 431 – 447. doi: 10.1017/S0022377800011442. ADSCrossRefGoogle Scholar
  28. Gary, S.P.: 1993, Theory of Space Plasma Microinstabilities, Cambridge University Press, Cambridge. CrossRefGoogle Scholar
  29. Gary, S.P.: 1999, Collisionless dissipation wavenumber: linear theory. J. Geophys. Res. 104, 6759 – 6762. doi: 10.1029/1998JA900161. ADSCrossRefGoogle Scholar
  30. Gary, S.P., Smith, C.W.: 2009, Short-wavelength turbulence in the solar wind: linear theory of whistler and kinetic Alfvén fluctuations. J. Geophys. Res. 114, A12105. doi: 10.1029/2009JA014525. ADSCrossRefGoogle Scholar
  31. Gary, S.P., Winske, D.: 1992, Correlation function ratios and the identification of space plasma instabilities. J. Geophys. Res. 97, 3103 – 3111. doi: 10.1029/91JA02752. ADSCrossRefGoogle Scholar
  32. Goldreich, P., Sridhar, S.: 1995, Toward a theory of interstellar turbulence. 2: Strong Alfvenic turbulence. Astrophys. J. 438, 763 – 775. doi: 10.1086/175121. ADSCrossRefGoogle Scholar
  33. Goldreich, P., Sridhar, S.: 1997, Magnetohydrodynamic turbulence revisited. Astrophys. J. 485, 680 – 688. doi: 10.1086/304442. ADSCrossRefGoogle Scholar
  34. Goldstein, M.L., Roberts, D.A., Fitch, C.A.: 1994, Properties of the fluctuating magnetic helicity in the inertial and dissipation ranges of solar wind turbulence. J. Geophys. Res. 99, 11519 – 11538. doi: 10.1029/94JA00789. ADSCrossRefGoogle Scholar
  35. Gurnett, D.A.: 1991, Waves and instabilities. In: Schwenn, R., Marsch, E. (eds.) Physics of the Inner Heliosphere II, Springer, Berlin, 135 – 157. CrossRefGoogle Scholar
  36. Hamilton, K., Smith, C.W., Vasquez, B.J., Leamon, R.J.: 2008, Anisotropies and helicities in the solar wind inertial and dissipation ranges at 1 AU. J. Geophys. Res. 113, A01106. doi: 10.1029/2007JA012559. ADSCrossRefGoogle Scholar
  37. Harmon, J.K.: 1989, Compressibility and cyclotron damping in the oblique Alfven waves. J. Geophys. Res. 94, 15399 – 15405. doi: 10.1029/JA094iA11p15399. ADSCrossRefGoogle Scholar
  38. Harvey, C.C., Celnikier, L., Hubert, D.: 1988, Results from the ISEE propagation density experiment. Adv. Space Res. 8, 185 – 196. doi: 10.1016/0273-1177(88)90131-7. ADSCrossRefGoogle Scholar
  39. He, J., Marsch, E., Tu, C., Yao, S., Tian, H.: 2011, Possible evidence of Alfvén-cyclotron waves in the angle distribution of magnetic helicity of solar wind turbulence. Astrophys. J. 731, 85. doi: 10.1088/0004-637X/731/2/85. ADSCrossRefGoogle Scholar
  40. He, J., Tu, C., Marsch, E., Yao, S.: 2012a, Reproduction of the observed two-component magnetic helicity in solar wind turbulence by a superposition of parallel and oblique Alfvén waves. Astrophys. J. 749, 86. doi: 10.1088/0004-637X/749/1/86. ADSCrossRefGoogle Scholar
  41. He, J., Tu, C., Marsch, E., Yao, S.: 2012b, Do oblique Alfvén/ion-cyclotron or fast-mode/whistler waves dominate the dissipation of solar wind turbulence near the proton inertial length? Astrophys. J. Lett. 745, L8. doi: 10.1088/2041-8205/745/1/L8. ADSCrossRefGoogle Scholar
  42. Hollweg, J.V.: 1999, Kinetic Alfvén wave revisited. J. Geophys. Res. 104, 14811 – 14820. doi: 10.1029/1998JA900132. ADSCrossRefGoogle Scholar
  43. Hollweg, J.V., Isenberg, P.A.: 2002, Generation of the fast solar wind: a review with emphasis on the resonant cyclotron interaction. J. Geophys. Res. 107, 1147. doi: 10.1029/2001JA000270. CrossRefGoogle Scholar
  44. Horbury, T.S., Forman, M., Oughton, S.: 2008, Anisotropic scaling of magnetohydrodynamic turbulence. Phys. Rev. Lett. 101, 175005. doi: 10.1103/PhysRevLett.101.175005. ADSCrossRefGoogle Scholar
  45. Howes, G.G., Quataert, E.: 2010, On the interpretation of magnetic helicity signatures in the dissipation range of solar wind turbulence. Astrophys. J. Lett. 709, L49 – L52. doi: 10.1088/2041-8205/709/1/L49. ADSCrossRefGoogle Scholar
  46. Howes, G.G., Cowley, S.C., Dorland, W., Hammett, G.W., Quataert, E., Schekochihin, A.A.: 2006, Astrophysical gyrokinetics: basic equations and linear theory. Astrophys. J. 651, 590 – 614. doi: 10.1086/506172. ADSCrossRefGoogle Scholar
  47. Howes, G.G., Cowley, S.C., Dorland, W., Hammett, G.W., Quataert, E., Schekochihin, A.A.: 2008a, A model of turbulence in magnetized plasmas: implications for the dissipation range in the solar wind. J. Geophys. Res. 113, A05103. doi: 10.1029/2007JA012665. ADSCrossRefGoogle Scholar
  48. Howes, G.G., Dorland, W., Cowley, S.C., Hammett, G.W., Quataert, E., Schekochihin, A.A., Tatsuno, T.: 2008b, Kinetic simulations of magnetized turbulence in astrophysical plasmas. Phys. Rev. Lett. 100, 065004. doi: 10.1103/PhysRevLett.100.065004. ADSCrossRefGoogle Scholar
  49. Howes, G.G., Tenbarge, J.M., Dorland, W., Quataert, E., Schekochihin, A.A., Numata, R., Tatsuno, T.: 2011, Gyrokinetic simulations of solar wind turbulence from ion to electron scales. Phys. Rev. Lett. 107, 035004. doi: 10.1103/PhysRevLett.107.035004. ADSCrossRefGoogle Scholar
  50. Howes, G.G., Bale, S.D., Klein, K.G., Chen, C.H.K., Salem, C.S., TenBarge, J.M.: 2012, The slow-mode nature of compressible wave power in solar wind turbulence. Astrophys. J. Lett. 753, L19. doi: 10.1088/2041-8205/753/1/L19. ADSCrossRefGoogle Scholar
  51. Isenberg, P.A.: 2001, Heating of coronal holes and generation of the solar wind by ion-cyclotron resonance. Space Sci. Rev. 95, 119 – 131. doi: 10.1023/A:1005287225222. ADSCrossRefGoogle Scholar
  52. Jian, L.K., Russell, C.T., Luhmann, J.G., Strangeway, R.J., Leisner, J.S., Galvin, A.B.: 2009, Ion cyclotron waves in the solar wind observed by STEREO near 1 AU. Astrophys. J. Lett. 701, L105 – L109. doi: 10.1088/0004-637X/701/2/L105. ADSCrossRefGoogle Scholar
  53. Jian, L.K., Russell, C.T., Luhmann, J.G., Anderson, B.J., Boardsen, S.A., Strangeway, R.J., Cowee, M.M., Wennmacher, A.: 2010, Observations of ion cyclotron waves in the solar wind near 0.3 AU. J. Geophys. Res. 115, A12115. doi: 10.1029/2010JA015737. ADSCrossRefGoogle Scholar
  54. Johnson, J.R., Cheng, C.Z.: 2001, Stochastic ion heating at the magnetopause due to kinetic Alfvén waves. Geophys. Res. Lett. 28, 4421 – 4424. doi: 10.1029/2001GL013509. ADSCrossRefGoogle Scholar
  55. Kellogg, P.J.: 2008, Measuring electric field and density turbulence in the solar wind. In: Li, G., Hu, Q., Verkhoglyadova, O., Zank, G.P., Lin, R.P., Luhmann, J. (eds.) Particle Acceleration and Transport in the Heliosphere and Beyond, AIP Conf. Proc. 1039, 87 – 92. doi: 10.1063/1.2982490. Google Scholar
  56. Kellogg, P.J., Horbury, T.S.: 2005, Rapid density fluctuations in the solar wind. Ann. Geophys. 23, 3765 – 3773. doi: 10.5194/angeo-23-3765-2005. ADSCrossRefGoogle Scholar
  57. Kellogg, P.J., Bale, S.D., Mozer, F.S., Horbury, T.S., Reme, H.: 2006, Solar wind electric fields in the ion cyclotron frequency range. Astrophys. J. 645, 704 – 710. doi: 10.1086/499265. ADSCrossRefGoogle Scholar
  58. Kiyani, K.H., Chapman, S.C., Khotyaintsev, Y.V., Dunlop, M.W., Sahraoui, F.: 2009, Global scale-invariant dissipation in collisionless plasma turbulence. Phys. Rev. Lett. 103, 075006. doi: 10.1103/PhysRevLett.103.075006. ADSCrossRefGoogle Scholar
  59. Klein, K.G., Howes, G.G., TenBarge, J.M., Bale, S.D., Chen, C.H.K., Salem, C.S.: 2012, Using synthetic spacecraft data to interpret compressible fluctuations in solar wind turbulence. Astrophys. J. 755, 159. doi: 10.1088/0004-637X/755/2/159. ADSCrossRefGoogle Scholar
  60. Laming, J.M.: 2005, Lower hybrid wave electron heating in the fast solar wind. Astrophys. Space Sci. 298, 385 – 388. doi: 10.1007/s10509-005-3977-2. ADSzbMATHCrossRefGoogle Scholar
  61. Leamon, R.J., Smith, C.W., Ness, N.F., Matthaeus, W.H., Wong, H.K.: 1998a, Observational constraints on the dynamics of the interplanetary magnetic field dissipation range. J. Geophys. Res. 103, 4775 – 4787. doi: 10.1029/97JA03394. ADSCrossRefGoogle Scholar
  62. Leamon, R.J., Matthaeus, W.H., Smith, C.W., Wong, H.K.: 1998b, Contribution of cyclotron-resonant damping to kinetic dissipation of interplanetary turbulence. Astrophys. J. Lett. 507, L181 – L184. doi: 10.1086/311698. ADSCrossRefGoogle Scholar
  63. Leamon, R.J., Smith, C.W., Ness, N.F., Wong, H.K.: 1999a, Dissipation range dynamics: kinetic Alfvén waves and the importance of beta-e. J. Geophys. Res. 104, 22331 – 22344. doi: 10.1029/1999JA900158. ADSCrossRefGoogle Scholar
  64. Leamon, R.J., Matthaeus, W.H., Smith, C.W., Wong, H.K.: 1999b, Considerations limiting cyclotron-resonant damping of cascading interplanetary turbulence and why the ‘slab’ approximation fails. In: Habbal, S.R., Esser, R., Hollweg, J.V., Isenberg, P.A. (eds.) Solar Wind Nine, AIP Conf. Proc. 471, 465 – 468. doi: 10.1063/1.58674. Google Scholar
  65. Lengyel-Frey, D., Hess, R.A., MacDowall, R.J., Stone, R.G., Lin, N., Balogh, A., Forsyth, R.: 1996, Ulysses observations of whistler waves at interplanetary shocks and in the solar wind. J. Geophys. Res. 101, 27555 – 27564. doi: 10.1029/96JA00548. ADSCrossRefGoogle Scholar
  66. Leubner, M.P., Viñas, A.F.: 1986, Stability analysis of double-peaked proton distribution functions in the solar wind. J. Geophys. Res. 91, 13366 – 13372. doi: 10.1029/JA091iA12p13366. ADSCrossRefGoogle Scholar
  67. Li, H., Gary, S.P., Stawicki, O.: 2001, On the dissipation of magnetic fluctuations in the solar wind. Geophys. Res. Lett. 28, 1347 – 1350. doi: 10.1029/2000GL012501. ADSCrossRefGoogle Scholar
  68. Lin, N., Kellogg, P.J., MacDowall, R.J., Scime, E.E., Balogh, A., Forsyth, R.J., McComas, D.J., Phillips, J.L.: 1998, Very low frequency waves in the heliosphere: ulysses observations. J. Geophys. Res. 103, 12023 – 12036. doi: 10.1029/98JA00764. ADSCrossRefGoogle Scholar
  69. Lin, N., Kellogg, P.J., MacDowall, R.J., McComas, D.J., Balogh, A.: 2003, VLF wave activity in the solar wind and the photoelectron effect in electric field measurements: Ulysses observations. Geophys. Res. Lett. 30, 8029. doi: 10.1029/2003GL017244. ADSCrossRefGoogle Scholar
  70. Luo, Q.Y., Wu, D.J.: 2010, Observations of anisotropic scaling of solar wind turbulence. Astrophys. J. Lett. 714, L138 – L141. doi: 10.1088/2041-8205/714/1/L138. ADSCrossRefGoogle Scholar
  71. Maron, J., Goldreich, P.: 2001, Simulations of incompressible magnetohydrodynamic turbulence. Astrophys. J. 554, 1175 – 1196. doi: 10.1086/321413. ADSCrossRefGoogle Scholar
  72. Marsch, E.: 1999, Cyclotron heating of the solar corona. Astrophys. Space Sci. 264, 63 – 76. doi: 10.1023/A:1002436407996. ADSzbMATHCrossRefGoogle Scholar
  73. Marsch, E., Chang, T.: 1983, Electromagnetic lower hybrid waves in the solar wind. J. Geophys. Res. 88, 6869 – 6880. doi: 10.1029/JA088iA09p06869. ADSCrossRefGoogle Scholar
  74. Matthaeus, W.H., Ghosh, S., Oughton, S., Roberts, D.A.: 1996, Anisotropic three-dimensional MHD turbulence. J. Geophys. Res. 101, 7619 – 7630. doi: 10.1029/95JA03830. ADSCrossRefGoogle Scholar
  75. Narita, Y.: 2012, Plasma Turbulence in the Solar System, Springer, Heidelberg. doi: 10.1007/978-3-642-25667-7. CrossRefGoogle Scholar
  76. Narita, Y., Gary, S.P., Saito, S., Glassmeier, K.-H., Motschmann, U.: 2011, Dispersion relation analysis of solar wind turbulence. Geophys. Res. Lett. 38, L05101. doi: 10.1029/2010GL046588. ADSCrossRefGoogle Scholar
  77. Neubauer, F.M., Musmann, G., Dehmel, G.: 1977, Fast magnetic fluctuations in the solar wind – HELIOS I. J. Geophys. Res. 82, 3201 – 3212. doi: 10.1029/JA082i022p03201. ADSCrossRefGoogle Scholar
  78. Neugebauer, M.: 1975, The enhancement of solar wind fluctuations at the proton thermal gyroradius. J. Geophys. Res. 80, 998 – 1002. doi: 10.1029/JA080i007p00998. ADSCrossRefGoogle Scholar
  79. Neugebauer, M.: 1976, Corrections to and comments on the paper ‘The enhancement of solar wind fluctuations at the proton thermal gyroradius’. J. Geophys. Res. 81, 2447 – 2448. doi: 10.1029/JA081i013p02447. ADSCrossRefGoogle Scholar
  80. Neugebauer, M., Wu, C.S., Huba, J.D.: 1978, Plasma fluctuations in the solar wind. J. Geophys. Res. 83, 1027 – 1034. doi: 10.1029/JA083iA03p01027. ADSCrossRefGoogle Scholar
  81. Oughton, S., Priest, E.R., Matthaeus, W.H.: 1994, The influence of a mean magnetic field on three-dimensional magnetohydrodynamic turbulence. J. Fluid Mech. 280, 95 – 117. doi: 10.1017/S0022112094002867. ADSzbMATHCrossRefGoogle Scholar
  82. Percival, D.B., Walden, A.T.: 1993, Spectral Analysis for Physical Applications, Cambridge University Press, Cambridge. zbMATHCrossRefGoogle Scholar
  83. Podesta, J.J.: 2009, Dependence of solar-wind power spectra on the direction of the local mean magnetic field. Astrophys. J. 698, 986 – 999. doi: 10.1088/0004-637X/698/2/986. ADSCrossRefGoogle Scholar
  84. Podesta, J.J.: 2010, Spectral anisotropy of solar wind turbulence in the inertial range and dissipation range. In: Maksimovic, M., Issautier, K., Meyer-Vernet, N., Moncuquet, M., Pantellini, F. (eds.) Twelfth International Solar Wind Conference, AIP Conf. Proc. 1216, 128 – 131. doi: 10.1063/1.3395817. Google Scholar
  85. Podesta, J.J.: 2011, Solar wind turbulence: advances in observations and theory. In: Bonanno, A., de Gouveia Dal Pino, E., Kosovichev, A.G. (eds.), Advances in Plasma Astrophysics, IAU Symp. 274, 295 – 301. doi: 10.1017/S1743921311007162. Google Scholar
  86. Podesta, J.J.: 2012a, Observations of electromagnetic fluctuations at ion kinetic scales in the solar wind. In: Leubner, M.P., Vörös, Z. (eds.) Multi-scale Dynamical Processes in Space and Astrophysical Plasmas, Springer, Berlin, 177 – 186. doi: 10.1007/978-3-642-30442-2_20. CrossRefGoogle Scholar
  87. Podesta, J.J.: 2012b, The need to consider ion Bernstein waves as a dissipation channel of solar wind turbulence. J. Geophys. Res. 117, 7101. doi: 10.1029/2012JA017770. CrossRefGoogle Scholar
  88. Podesta, J.J.: 2013, Spectral scaling laws of solar wind fluctuations at 1 AU. In: Zank, G. (ed.) Thirteenth International Solar Wind Conference, AIP Conf. Proc., in press. Google Scholar
  89. Podesta, J.J., Gary, S.P.: 2011a, Effect of differential flow of alpha particles on proton pressure anisotropy instabilities in the solar wind. Astrophys. J. 742, 41. doi: 10.1088/0004-637X/742/1/41. ADSCrossRefGoogle Scholar
  90. Podesta, J.J., Gary, S.P.: 2011b, Magnetic helicity spectrum of solar wind fluctuations as a function of the angle with respect to the local mean magnetic field. Astrophys. J. 734, 15. doi: 10.1088/0004-637X/734/1/15. ADSCrossRefGoogle Scholar
  91. Podesta, J.J., TenBarge, J.M.: 2012, Scale dependence of the variance anisotropy near the proton gyroradius scale: additional evidence for kinetic Alfvén waves in the solar wind at 1 AU. J. Geophys. Res. 117, A10106. doi: 10.1029/2012JA017724. ADSCrossRefGoogle Scholar
  92. Quataert, E.: 1998, Particle heating by Alfvenic turbulence in hot accretion flows. Astrophys. J. 500, 978 – 991. doi: 10.1086/305770. ADSCrossRefGoogle Scholar
  93. Quataert, E., Gruzinov, A.: 1999, Turbulence and particle heating in advection-dominated accretion flows. Astrophys. J. 520, 248 – 255. doi: 10.1086/307423. ADSCrossRefGoogle Scholar
  94. Rosenberg, S., Gekelman, W.: 2001, A three-dimensional experimental study of lower hybrid wave interactions with field-aligned density depletions. J. Geophys. Res. 106, 28867 – 28884. doi: 10.1029/2000JA000061. ADSCrossRefGoogle Scholar
  95. Sahraoui, F., Goldstein, M.L.: 2011, Electron scale solar wind turbulence: cluster observations and theoretical modeling. In: Vassiliadis, D., Fung, S.F., Shao, X., Daglis, I.A., Huba, J.D. (eds.) Modern Challenges in Nonlinear Plasma Physics: a Festschrift Honoring the Career of Dennis Papadopoulos, AIP Conf. Proc. 1320, 160 – 165. doi: 10.1063/1.3544320. Google Scholar
  96. Sahraoui, F., Goldstein, M.L., Robert, P., Khotyaintsev, Y.V.: 2009, Evidence of a cascade and dissipation of solar-wind turbulence at the electron gyroscale. Phys. Rev. Lett. 102, 231102. doi: 10.1103/PhysRevLett.102.231102. ADSCrossRefGoogle Scholar
  97. Sahraoui, F., Goldstein, M.L., Belmont, G., Canu, P., Rezeau, L.: 2010, Three dimensional anisotropic k spectra of turbulence at subproton scales in the solar wind. Phys. Rev. Lett. 105, 131101. doi: 10.1103/PhysRevLett.105.131101. ADSCrossRefGoogle Scholar
  98. Sahraoui, F., Goldstein, M.L., Abdul-Kader, K., Belmont, G., Rezeau, L., Robert, P., Canu, P.: 2011, Observation and theoretical modeling of electron scale solar wind turbulence. C. R. Phys. 12, 132 – 140. doi: 10.1016/j.crhy.2010.11.008. ADSCrossRefGoogle Scholar
  99. Salem, C.S., Howes, G.G., Sundkvist, D., Bale, S.D., Chaston, C.C., Chen, C.H.K., Mozer, F.S.: 2012, Identification of kinetic Alfvén wave turbulence in the solar wind. Astrophys. J. Lett. 745, L9. doi: 10.1088/2041-8205/745/1/L9. ADSCrossRefGoogle Scholar
  100. Schekochihin, A.A., Cowley, S.C., Dorland, W.: 2007, Interplanetary and interstellar plasma turbulence. Plasma Phys. Control. Fusion 49, A195 – A209. doi: 10.1088/0741-3335/49/5A/S16. ADSCrossRefGoogle Scholar
  101. Schekochihin, A.A., Cowley, S.C., Dorland, W., Hammett, G.W., Howes, G.G., Plunk, G.G., Quataert, E., Tatsuno, T.: 2008, Gyrokinetic turbulence: a nonlinear route to dissipation through phase space. Plasma Phys. Control. Fusion 50, 124024. doi: 10.1088/0741-3335/50/12/124024. ADSCrossRefGoogle Scholar
  102. Schekochihin, A.A., Cowley, S.C., Dorland, W., Hammett, G.W., Howes, G.G., Quataert, E., Tatsuno, T.: 2009, Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. Astrophys. J. Suppl. 182, 310 – 377. doi: 10.1088/0067-0049/182/1/310. ADSCrossRefGoogle Scholar
  103. Schwartz, S.J., Burgess, D., Moses, J.J.: 1996, Low-frequency waves in the Earth’s magnetosheath: present status. Ann. Geophys. 14, 1134 – 1150. doi: 10.1007/s00585-996-1134-z. ADSGoogle Scholar
  104. Shebalin, J.V., Matthaeus, W.H., Montgomery, D.: 1983, Anisotropy in MHD turbulence due to a mean magnetic field. J. Plasma Phys. 29, 525 – 547. doi: 10.1017/S0022377800000933. ADSCrossRefGoogle Scholar
  105. Shukla, P.K., Bingham, R., McKenzie, J.F., Axford, W.I.: 1999, Solar coronal heating by high-frequency dispersive Alfvén waves. Solar Phys. 186, 61 – 66. doi: 10.1023/A:1005133420666. ADSCrossRefGoogle Scholar
  106. Smith, C.W., Vasquez, B.J., Hamilton, K.: 2006, Interplanetary magnetic fluctuation anisotropy in the inertial range. J. Geophys. Res. 111, A09111. doi: 10.1029/2006JA011651. ADSCrossRefGoogle Scholar
  107. Smith, K.W., Terry, P.W.: 2011, Damping of electron density structures and implications for interstellar scintillation. Astrophys. J. 730, 133. doi: 10.1088/0004-637X/730/2/133. ADSCrossRefGoogle Scholar
  108. Stawicki, O., Gary, S.P., Li, H.: 2001, Solar wind magnetic fluctuation spectra: dispersion versus damping. J. Geophys. Res. 106, 8273 – 8282. doi: 10.1029/2000JA000446. ADSCrossRefGoogle Scholar
  109. TenBarge, J.M., Podesta, J.J., Klein, K.G., Howes, G.G.: 2012, Interpreting magnetic variance anisotropy measurements in the solar wind. Astrophys. J. 753, 107. doi: 10.1088/0004-637X/753/2/107. ADSCrossRefGoogle Scholar
  110. Terry, P.W., Smith, K.W.: 2007, Coherence and intermittency of electron density in small-scale interstellar turbulence. Astrophys. J. 665, 402 – 415. doi: 10.1086/519016. ADSCrossRefGoogle Scholar
  111. Terry, P.W., Smith, K.W.: 2008, Intermittency of electron density in interstellar kinetic Alfvén wave turbulence. Phys. Plasmas 15, 056502. doi: 10.1063/1.2856213. ADSCrossRefGoogle Scholar
  112. Terry, P.W., McKay, C., Fernandez, E.: 2001, The role of electron density in magnetic turbulence. Phys. Plasmas 8, 2707 – 2721. doi: 10.1063/1.1362531. ADSCrossRefGoogle Scholar
  113. Tsurutani, B.T., Arballo, J.K., Mok, J., Smith, E.J., Mason, G.M., Tan, L.C.: 1994, Electromagnetic waves with frequencies near the local proton gyrofrequency: ISEE-3 1 AU observations. Geophys. Res. Lett. 21, 633 – 636. doi: 10.1029/94GL00566. ADSCrossRefGoogle Scholar
  114. Verdon, A.L., Cairns, I.H., Melrose, D.B., Robinson, P.A.: 2009a, Properties of lower hybrid waves. In: Gopalswamy, N., Webb, D.F. (eds.) Universal Heliophysical Processes, IAU Symp. 257, 569 – 573. doi: 10.1017/S1743921309029871. Google Scholar
  115. Verdon, A.L., Cairns, I.H., Melrose, D.B., Robinson, P.A.: 2009b, Warm electromagnetic lower hybrid wave dispersion relation. Phys. Plasmas 16, 052105. doi: 10.1063/1.3132628. ADSCrossRefGoogle Scholar
  116. Verscharen, D., Marsch, E., Motschmann, U., Müller, J.: 2012, Kinetic cascade beyond magnetohydrodynamics of solar wind turbulence in two-dimensional hybrid simulations. Phys. Plasmas 19, 022305. doi: 10.1063/1.3682960. ADSCrossRefGoogle Scholar
  117. Voitenko, Y., Goossens, M.: 2004, Cross-field heating of coronal ions by low-frequency kinetic Alfvén waves. Astrophys. J. Lett. 605, L149 – L152. doi: 10.1086/420927. ADSCrossRefGoogle Scholar
  118. White, R., Chen, L., Lin, Z.: 2002, Resonant plasma heating below the cyclotron frequency. Phys. Plasmas 9, 1890 – 1897. doi: 10.1063/1.1445180. ADSCrossRefGoogle Scholar
  119. Wicks, R.T., Horbury, T.S., Chen, C.H.K., Schekochihin, A.A.: 2010, Power and spectral index anisotropy of the entire inertial range of turbulence in the fast solar wind. Mon. Not. Roy. Astron. Soc. 407, L31 – L35. doi: 10.1111/j.1745-3933.2010.00898.x. ADSCrossRefGoogle Scholar
  120. Yoon, P.H., Fang, T.: 2008, Parallel cascade of Alfvén waves. Plasma Phys. Control. Fusion 50, 085007. doi: 10.1088/0741-3335/50/8/085007. ADSCrossRefGoogle Scholar
  121. Yoon, P.H., Fang, T.: 2009, Proton heating by parallel Alfvén wave cascade. Phys. Plasmas 16, 062314. doi: 10.1063/1.3159605. ADSCrossRefGoogle Scholar
  122. Zhang, Y., Matsumoto, H., Kojima, H.: 1998, Bursts of whistler mode waves in the upstream of the bow shock: geotail observations. J. Geophys. Res. 103, 20529 – 20540. doi: 10.1029/98JA01371. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Space Science InstituteBoulderUSA

Personalised recommendations