Dynamics of an Erupting Arched Magnetic Flux Rope in a Laboratory Plasma Experiment
- 501 Downloads
- 9 Citations
Abstract
A laboratory plasma experiment has been built to study the eruption of arched magnetic flux ropes (AMFRs) in the presence of a large magnetized plasma. This experiment simulates the eruption of solar AMFRs in two essential steps: i) it produces an AMFR (n=6.0×1012 cm−3, \(T_{\rm e} = 14~\mathrm{eV}\), B≈1 kilo-gauss, L=0.51 m) with a persistent appearance that lasts several Alfvén transit times using a lanthanum hexaboride (LaB6) plasma source, and ii) it generates controlled plasma flows from the footpoints of the AMFR using laser beams. An additional LaB6 plasma source generates a large magnetized plasma in the background. The laser-generated flows trigger the eruption by injecting dense plasma and magnetic flux into the AMFR. The experiment is highly reproducible and runs continuously with a 0.5 Hz repetition rate; hence, several thousand identical loop eruptions are routinely generated and their spatio-temporal evolution is recorded in three-dimensions using computer-controlled movable probes. Measurements demonstrate striking similarities between the erupting laboratory and solar arched magnetic flux ropes.
Keywords
Coronal mass ejections, initiation and propagation Flares, dynamics Waves, plasmaNotes
Acknowledgements
The experiment was conducted at the Basic Plasma Science Facility (BaPSF) at the University of California, Los Angeles, which is jointly funded by National Science Foundation and Department of Energy. The authors thank James Chen, Alexander Kosovichev, and Steven Spangler for useful discussions and P. Pribyl, Z. Lucky, and M. Drandell for technical assistance. One of the authors (SKPT) thanks Paul Bellan for his valuable suggestions in deriving the two-fluid MHD induction equation.
References
- Abbot C.: 1911, The Sun, D. Appleton and Company, New York, 128. Google Scholar
- Alfvén, H., Carlqvist, P.: 1967, Solar Phys. 1, 220. ADSCrossRefGoogle Scholar
- Antiochos, S.K., DeVore, C.R., Klimchuk, J.A.: 1999, Astrophys. J. 510, 485. ADSCrossRefGoogle Scholar
- Arnold, L., Dreher, J., Grauer, R., Soltwisch, H., Stein, H.: 2008, Phys. Plasmas 15, 042106. ADSCrossRefGoogle Scholar
- Bostick, W.H.: 1956, Phys. Rev. 104, 1191. ADSCrossRefGoogle Scholar
- Burnette, A.B., Canfield, R.C., Pevtsov, A.A.: 2004, Astrophys. J. 606, 565. ADSCrossRefGoogle Scholar
- Chen, J.: 1996, J. Geophys. Res. 101, 27499. ADSCrossRefGoogle Scholar
- Chen, J., Kunkel, V.: 2010, Astrophys. J. 717, 1105. ADSCrossRefGoogle Scholar
- Chen, J., Schuck, P.: 2007, Solar Phys. 246, 145. ADSCrossRefGoogle Scholar
- Cooper, C.M., Gekelman, W., Pribyl, P., Lucky, Z.: 2010, Rev. Sci. Instrum. 81, 083503. ADSCrossRefGoogle Scholar
- Cremades, H., Bothmer, V.: 2004, Astron. Astrophys. 422, 307. ADSCrossRefGoogle Scholar
- Dennis, B.R., Schwartz, R.A.: 1989, Solar Phys. 121, 75. ADSCrossRefGoogle Scholar
- Forbes, T.G., Isenberg, P.A.: 1991, Astrophys. J. 373, 294. ADSCrossRefGoogle Scholar
- Gekelman, W., Maggs, J., Pfister, H.: 1992, IEEE Trans. Plasma Sci. 20, 614. ADSCrossRefGoogle Scholar
- Gibson, S.E., Low, B.C.: 2000, J. Geophys. Res. 105, 18187. ADSCrossRefGoogle Scholar
- Habbal, S.R., Holzer, T.E., Leer, E.: 1979, Solar Phys. 64, 287. ADSCrossRefGoogle Scholar
- Hansen J.F.: 2001, “Laboratory Simulations of Solar Prominences”. Ph.D. thesis, California Institute of Technology. Google Scholar
- Hansen, J.F., Tripathi, S.K.P., Bellan, P.M.: 2004, Phys. Plasmas 11, 3177. ADSCrossRefGoogle Scholar
- Hood, A.W., Priest, E.R.: 1979, Solar Phys. 64, 303. ADSCrossRefGoogle Scholar
- Hudson, H.: 2011, Space Sci. Rev. 158, 5. ADSCrossRefGoogle Scholar
- Intrator, T., Sun, X., Lapenta, G., Dorf, L., Furno, I.: 2009, Nat. Phys. 5, 521. CrossRefGoogle Scholar
- Kosovichev, A., Zharkova, V.: 1999, Solar Phys. 190, 459. ADSCrossRefGoogle Scholar
- Krieger, A.S., Timothy, A.F., Roelof, E.C.: 1973, Solar Phys. 29, 505. ADSCrossRefGoogle Scholar
- Kulsrud, R., Ji, H., Fox, W., Yamada, M.: 2005, Phys. Plasmas 12, 082301. ADSCrossRefGoogle Scholar
- Lang K.: 2001, The Cambridge Encyclopedia of the Sun, 1st edn., Cambridge University Press, Cambridge, 106. Google Scholar
- Lawrence, E.E., Gekelman, W.: 2009, Phys. Rev. Lett. 103, 105002. ADSCrossRefGoogle Scholar
- Leka, K.D., Canfield, R.C., McClymont, A.N., van Driel-Gesztelyi, L.: 1996, Astrophys. J. 462, 547. ADSCrossRefGoogle Scholar
- Lin, J., Li, J., Forbes, T.G., Ko, Y.K., Raymond, J.C., Vourlidas, A.: 2007, Astrophys. J. Lett. 658, L123. ADSCrossRefGoogle Scholar
- Low, B.C.: 2001, J. Geophys. Res. 106, 25141. ADSCrossRefGoogle Scholar
- Nakariakov, V.M., Ofman, L., Deluca, E.E., Roberts, B., Davila, J.M.: 1999, Science 285, 862. ADSCrossRefGoogle Scholar
- Ofman, L., Wang, T.J.: 2008, Astron. Astrophys. 482, L9. ADSCrossRefGoogle Scholar
- Oz, E., Myers, C.E., Yamada, M., Ji, H., Kulsrud, R.M., Xie, J.: 2011, Phys. Plasmas 18, 102107. ADSCrossRefGoogle Scholar
- Pevtsov, A.A., Canfield, R.C., Metcalf, T.R.: 1995, Astrophys. J. Lett. 440, L109. ADSCrossRefGoogle Scholar
- Rosner, R., Tucker, W.H., Vaiana, G.S.: 1978, Astrophys. J. 220, 643. ADSCrossRefGoogle Scholar
- Stenzel, R.L., Gekelman, W., Wild, N.: 1982, J. Geophys. Res. 87, 111. ADSCrossRefGoogle Scholar
- Timothy, A.F., Krieger, A.S., Vaiana, G.S.: 1975, Solar Phys. 42, 135. ADSCrossRefGoogle Scholar
- Török, T., Kliem, B., Titov, V.S.: 2004, Astron. Astrophys. 413, L27. ADSzbMATHCrossRefGoogle Scholar
- Tripathi, S.K.P., Bellan, P.M., Yun, G.S.: 2007, Phys. Rev. Lett. 98, 135002. ADSCrossRefGoogle Scholar
- Tripathi, S.K.P., Gekelman, W.: 2010, Phys. Rev. Lett. 105, 075005. ADSCrossRefGoogle Scholar
- Tripathi S.K.P., Gekelman W.: 2011, In: Choudhary D.P., Strassmeier K.G. (eds.) The Physics of Sun and Star Spots, IAU Symp. 6, 483. Google Scholar
- Wheatland, M.S.: 2000, Astrophys. J. 532, 616. ADSCrossRefGoogle Scholar