Advertisement

Solar Physics

, Volume 284, Issue 1, pp 5–15 | Cite as

Post-Eruption Arcades and Interplanetary Coronal Mass Ejections

  • S. YashiroEmail author
  • N. Gopalswamy
  • P. Mäkelä
  • S. Akiyama
Flux-Rope Structure of Coronal Mass Ejections

Abstract

We compare the temporal and spatial properties of posteruption arcades (PEAs) associated with coronal mass ejections (CMEs) at the Sun that end up as magnetic cloud (MC) and non-MC events in the solar wind. We investigate the length, width, area, tilt angle, and formation time of the PEAs associated with 22 MC and 29 non-MC events and we find no difference between the two populations. According to current ideas on the relation between flares and CMEs, the PEA is formed together with the CME flux-rope structure by magnetic reconnection. Our results indicate that at the Sun flux ropes form during CMEs in association with both MC and non-MC events; however, for non-MC events the flux-rope structure is not observed in the interplanetary space because of the geometry of the observation, i.e. the location of the spacecraft when the structure passes through it.

Keywords

Flares Coronal mass ejections Posteruption arcades Flux rope Magnetic cloud 

Notes

Acknowledgements

We would like to thank the local organizers of the LWS CDAW meetings in San Diego, USA, and Alcalá de Henares, Spain. This research was supported by NASA grants NNX10AL50A and NNG11PL10A. SOHO is an international cooperation project between ESA and NASA.

References

  1. Aschwanden, M.J., Alexander, D.: 2001, Flare plasma cooling from 30 MK down to 1 MK modeled from Yohkoh, GOES, and TRACE observations during the Bastille Day event (14 July 2000). Solar Phys. 204, 91. ADSCrossRefGoogle Scholar
  2. Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357. ADSCrossRefGoogle Scholar
  3. Bruzek, A.: 1964, On the association between loop prominences and flares. Astrophys. J. 140, 746. ADSCrossRefGoogle Scholar
  4. Burlaga, L.F., Plunkett, S.P., St. Cyr, O.C.: 2002, Successive CMEs and complex ejecta. J. Geophys. Res. 107, 1266. CrossRefGoogle Scholar
  5. Burlaga, L., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock – Voyager, Helios, and IMP 8 observations. J. Geophys. Res. 86, 6673. ADSCrossRefGoogle Scholar
  6. Carmichael, H.: 1964, In: Hess, W.N. (ed.) Physics of Solar Flares, NASA SP-50, 451. Google Scholar
  7. Gopalswamy, N.: 2006, Properties of interplanetary coronal mass ejections. Space Sci. Rev. 124, 145. ADSCrossRefGoogle Scholar
  8. Gopalswamy, N., Nitta, N., Manoharan, P.K., Raoult, A., Pick, M.: 1999, X-ray and radio manifestations of a solar eruptive event. Astron. Astrophys. 347, 684. ADSGoogle Scholar
  9. Gopalswamy, N., Shimojo, M., Lu, W., Yashiro, S., Shibasaki, K., Howard, R.A.: 2003, Prominence eruptions and coronal mass ejection: a statistical study using microwave observations. Astrophys. J. 586, 562. ADSCrossRefGoogle Scholar
  10. Gopalswamy, N., Dal Lago, A., Yashiro, S., Akiyama, S.: 2009, The expansion and radial speeds of coronal mass ejections. Cent. Eur. Astrophys. Bull. 33, 115. ADSGoogle Scholar
  11. Gopalswamy, N., Xie, H., Mäkelä, P., Akiyama, S., Yashiro, S., Kaiser, M.L., Howard, R.A., Bougeret, J.-L.: 2010, Interplanetary shocks lacking type II radio bursts. Astrophys. J. 710, 1111. ADSCrossRefGoogle Scholar
  12. Gopalswamy, N., Mäkelä, P., Yashiro, S., Davila, J.M.: 2012, The relationship between the expansion speed and radial speed of CMEs confirmed using quadrature observations of the 2011 February 15 CME. Sun Geosph. 7, 7. ADSGoogle Scholar
  13. Gopalswamy, N., Mäkelä, P., Akiyama, S., Xie, H., Yashiro, S., Reinard, A.A.: 2013, The solar connection of enhanced heavy ion charge states in the interplanetary medium: implications for the flux-rope structure of CMEs, Solar Phys., in this issue. doi: 10.1007/s11207-012-0215-2.
  14. Gosling, J.T.: 1990, Coronal Mass Ejections and Magnetic Flux Ropes in Interplanetary Space, Geophys. Monogr. Ser. 58, AGU, Washington, 343. Google Scholar
  15. Hanaoka, Y., Kurokawa, H., Enome, S., Nakajima, H., Shibasaki, K., Nishio, M., et al.: 1994, Simultaneous observations of a prominence eruption followed by a coronal arcade formation in radio, soft X-rays, and H. Publ. Astron. Soc. Japan 46, 205. ADSGoogle Scholar
  16. Harra-Murnion, L.K., Schmieder, B., van Driel-Gesztelyi, L., Sato, J., Plunkett, S.P., Rudawy, P., Rompolt, B., Akioka, M., Sakao, T., Ichimoto, K.: 1998, Multi-wavelength observations of POST flare loops in two long duration solar flares. Astron. Astrophys. 337, 911. ADSGoogle Scholar
  17. Hirayama, T.: 1974, Theoretical model of flares and prominences. I: evaporating flare model. Solar Phys. 34, 323. ADSCrossRefGoogle Scholar
  18. Hundhausen, A.: 1999, Coronal mass ejections. In: Strong, K.T., Saba, J.L.R., Haisch, B.M., Schmelz, J.T. (eds.) The Many Faces of the Sun: A Summary of the Results from NASA’s Solar Maximum Mission, 143. CrossRefGoogle Scholar
  19. Kahler, S.: 1977, The morphological and statistical properties of solar X-ray events with long decay times. Astrophys. J. 214, 891. ADSCrossRefGoogle Scholar
  20. Kim, R.-S., Gopalswamy, N., Cho, K.-S., Moon, Y.-J., Yashiro, S.: 2013, Propagation characteristics of CMEs associated magnetic clouds and ejecta. Solar Phys., in this issue. doi: 10.1007/s11207-013-0230-y.
  21. Kopp, R.A., Pneuman, G.W.: 1976, Magnetic reconnection in the corona and the loop prominence phenomenon. Solar Phys. 50, 85. ADSCrossRefGoogle Scholar
  22. Krall, J., St. Cyr, O.C.: 2006, Flux-rope coronal mass ejection geometry and its relation to observed morphology. Astrophys. J. 652, 1740. ADSCrossRefGoogle Scholar
  23. Longcope, D.W., Beveridge, C.: 2007, A quantitative, topological model of reconnection and flux rope formation in a two-ribbon flare. Astrophys. J. 669, 621. ADSCrossRefGoogle Scholar
  24. Longcope, D.W., Magara, T.: 2004, A comparison of the minimum current corona to a magnetohydrodynamic simulation of quasi-static coronal evolution. Astrophys. J. 608, 1106. ADSCrossRefGoogle Scholar
  25. Mäkelä, P., Gopalswamy, N., Xie, H., Mohamed, A., Akiyama, S., Yashiro, S.: 2013, Coronal hole influence on the observed structure of interplanetary CMEs. Solar Phys., in this issue. doi: 10.1007/s11207-012-0211-6.
  26. McAllister, A.H., Dryer, M., McIntosh, P., Singer, H., Weiss, L.: 1996, A large polar crown coronal mass ejection and a “problem” goemagnetic storm: April 14 – 23, 1994. J. Geophys. Res. 101, 13497. ADSCrossRefGoogle Scholar
  27. Moon, Y.J., Cho, K.S., Dryer, M., Kim, Y.H., Bong, S.C., Chae, J., Park, Y.D.: 2005, New geoeffective parameters of very fast halo coronal mass ejection. Astrophys. J. 624, 414. ADSCrossRefGoogle Scholar
  28. Munro, R.H., Gosling, J.T., Hildner, E., MacQueen, R.M., Poland, A.I., Ross, C.L.: 1979, The association of coronal mass ejection transients with other forms of solar activity. Solar Phys. 61, 201. ADSCrossRefGoogle Scholar
  29. Pallavicini, R., Serio, S., Vaiana, G.S.: 1977, A survey of soft X-ray limb flare images – the relation between their structure in the corona and other physical parameters. Astrophys. J. 216, 108. ADSCrossRefGoogle Scholar
  30. Qiu, J., Hu, Q., Howard, T.A., Yurchyshyn, V.B.: 2007, On the magnetic flux budget in low-corona magnetic reconnection and interplanetary coronal mass ejections. Astrophys. J. 659, 758. ADSCrossRefGoogle Scholar
  31. Sheeley, N.R., Bohlin, J.D. Jr., Brueckner, G.E., Purcell, J.D., Scherrer, V.E., Tousey, R., Smith, J.B., Speich, D.M. Jr., Tandberg-Hanssen, E., Wilson, R.M.: 1975, Coronal changes associated with a disappearing filament. Solar Phys. 45, 377. ADSCrossRefGoogle Scholar
  32. Sturrock, P.A.: 1966, Model of the high-energy phase of solar flares. Nature 211, 695. ADSCrossRefGoogle Scholar
  33. Tripathi, D., Bothmer, V., Cremades, H.: 2004, The basic characteristics of EUV post-eruptive arcades and their role as tracers of coronal mass ejection source regions. Astron. Astrophys. 422, 337. ADSCrossRefGoogle Scholar
  34. Webb, D.F., Hundhausen, A.J.: 1987, Activity associated with the solar origin of coronal mass ejections. Solar Phys. 108, 383. ADSCrossRefGoogle Scholar
  35. Xie, H., Gopalswamy, N., St. Cyr, O.C.: 2013, Near-Sun flux rope structure of CMEs. Solar Phys., in this issue. doi: 10.1007/s11207-012-0209-0.
  36. Yashiro, S., Gopalswamy, N.: 2009, Statistical relationship between solar flares and coronal mass ejections. In: Gopalswamy, N., Webb, D.F. (eds.) Universal Heliophysical Processes, IAU Symp. 257, Cambridge Univ. Press, London, 233. Google Scholar
  37. Yashiro, S., Akiyama, S., Gopalswamy, N., Howard, R.A.: 2006, Different power-law indices in the frequency distributions of flares with and without coronal mass ejections. Astrophys. J. Lett. 650, L143. ADSCrossRefGoogle Scholar
  38. Yurchyshyn, V.: 2008, Relationship between EIT posteruption arcades, coronal mass ejections, the coronal neutral line, and magnetic clouds. Astrophys. J. Lett. 675, L49. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • S. Yashiro
    • 1
    • 2
    Email author
  • N. Gopalswamy
    • 2
  • P. Mäkelä
    • 1
    • 2
  • S. Akiyama
    • 1
    • 2
  1. 1.The Catholic University of AmericaWashingtonUSA
  2. 2.NASA Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations