Advertisement

Solar Physics

, Volume 284, Issue 1, pp 77–88 | Cite as

Propagation Characteristics of CMEs Associated with Magnetic Clouds and Ejecta

  • R.-S. KimEmail author
  • N. Gopalswamy
  • K.-S. Cho
  • Y.-J. Moon
  • S. Yashiro
Flux-Rope Structure of Coronal Mass Ejections

Abstract

We have investigated the characteristics of magnetic cloud (MC) and ejecta (EJ) associated coronal mass ejections (CMEs) based on the assumption that all CMEs have a flux rope structure. For this, we used 54 CMEs and their interplanetary counterparts (interplanetary CMEs: ICMEs) that constitute the list of events used by the NASA/LWS Coordinated Data Analysis Workshop (CDAW) on CME flux ropes. We considered the location, angular width, and speed as well as the direction parameter, D. The direction parameter quantifies the degree of asymmetry of the CME shape in coronagraph images, and shows how closely the CME propagation is directed to Earth. For the 54 CDAW events, we found the following properties of the CMEs: i) the average value of D for the 23 MCs (0.62) is larger than that for the 31 EJs (0.49), which indicates that the MC-associated CMEs propagate more directly toward the Earth than the EJ-associated CMEs; ii) comparison between the direction parameter and the source location shows that the majority of the MC-associated CMEs are ejected along the radial direction, while many of the EJ-associated CMEs are ejected non-radially; iii) the mean speed of MC-associated CMEs (946 km s−1) is faster than that of EJ-associated CMEs (771 km s−1). For seven very fast CMEs (≥ 1500 km s−1), all CMEs with large D (≥ 0.4) are associated with MCs and the CMEs with small D are associated with EJs. From the statistical analysis of CME parameters, we found the superiority of the direction parameter. Based on these results, we suggest that the CME trajectory essentially determines the observed ICME structure.

Keywords

Coronal mass ejections, ejecta Interplanetary coronal mass ejections, magnetic clouds 

Notes

Acknowledgements

This work benefited from the NASA/LWS Coordinated Data Analysis Workshops on CME flux ropes in 2010 and 2011. We acknowledge the workshop support provided by NASA/LWS, Predictive Sciences, Inc. (San Diego, CA), University of Alcala (Alcala de Henares, Spain), and Ministerio de Ciencia e Innovacion (Reference number AYA2010-12439-E), Spain. This work was partially supported by the Construction of Korean Space Weather Center as the project of KASI, the KASI Basic Research Fund, and Research Fellowship for Young Scientists of KRCF. Y.-J.M. has been supported by the WCU program (No. R31-10016) and Basic Research Promotion Fund (20090071744 and 20100014501) through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology.

References

  1. Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., et al.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357. ADSCrossRefGoogle Scholar
  2. Burlaga, L.F., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations. J. Geophys. Res. 86, 6673. ADSCrossRefGoogle Scholar
  3. Burlaga, L.F., Skoug, R.M., Smith, C.W., Webb, D.F., Zurbuchen, T.H., Reinard, R.: 2001, Fast ejecta during the ascending phase of solar cycle 23: ACE observations, 1998 – 1999. J. Geophys. Res. 106(A10), 20957. ADSCrossRefGoogle Scholar
  4. Gloeckler, G., Cain, J., Ipavich, F.M., Tums, E.O., Bedini, P., Fisk, L.A., et al.: 1998, Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft. Space Sci. Rev. 86, 497. ADSCrossRefGoogle Scholar
  5. Gopalswamy, N.: 2006, Properties of interplanetary coronal mass ejections. Space Sci. Rev. 124, 145. ADSCrossRefGoogle Scholar
  6. Gopalswamy, N., Yashiro, S., Liu, Y., Michalek, G., Vourlidas, A., Kaiser, M.L., Howard, R.A.: 2005, Coronal mass ejections and other extreme characteristics of the 2003 October – November solar eruptions. J. Geophys. Res. 110, A09S15. doi: 10.1029/2004JA010958. CrossRefGoogle Scholar
  7. Gopalswamy, N., Xie, H., Mäkelä, P., Akiyama, S., Yashiro, S., Kaiser, M.K., Howard, R.A., Bougeret, J.-L.: 2010, Interplanetary shocks lacking type II radio burst. Astrophys. J. 710, 1111. ADSCrossRefGoogle Scholar
  8. Gosling, J.T.: 1990, In: Physics of Magnetic Flux Ropes, Geophys. Monogr. Ser. 58, AGU, Washington, 343. CrossRefGoogle Scholar
  9. Howard, T.A., DeForest, C.E.: 2012, Inner heliospheric flux rope evolution via imaging of coronal mass ejection. Astrophys. J. 746, 64. ADSCrossRefGoogle Scholar
  10. Hundhausen, A.J.: 1993, Size and locations of coronal mass ejections – SMM observations from 1980 and 1984 – 1989. J. Geophys. Res. 98(A8), 13177. ADSCrossRefGoogle Scholar
  11. Jacobs, C., Roussev, I.I., Lugaz, N., Poedts, S.: 2009, The internal structure of coronal mass ejections: are all regular magnetic clouds flux ropes? Astrophys. J. Lett. 695, L171. ADSCrossRefGoogle Scholar
  12. Kim, R.-S., Cho, K.-S., Moon, Y.-J., Dryer, M., Yi, Y., Lee, J., Kim, K.-H., Wang, H., Song, H., Park, Y.-D.: 2008, CME earthward direction as an important geoeffectiveness indicator. Astrophys. J. 677, 1378. ADSCrossRefGoogle Scholar
  13. Mäkelä, P., Gopalswamy, N., Xie, H., Mohamed, A.A., Akiyama, S., Yashiro, S.: 2013, Coronal hole influence on the observed structure of interplanetary CMEs. Solar Phys., in this issue. doi: 10.1007/s11207-012-0211-6. Google Scholar
  14. Manchester, W.B., Gombosi, T.I., Roussev, I., DeZeeuw, D.L., Sokolov, I.V., Powell, K.G., Tóth, G., Opher, M.: 2004, Three-dimensional MHD simulation of a flux rope driven CME. J. Geophys. Res. 109(A1), A01102. ADSCrossRefGoogle Scholar
  15. Moon, Y.-J., Cho, K.-S., Dryer, M., Kim, Y.-H., Bong, S.-C., Chae, J., Park, Y.D.: 2005, New geoeffective parameters of very fast halo coronal mass ejections. Astrophys. J. 624, 414. ADSCrossRefGoogle Scholar
  16. Nakwacki, M.S., Dasso, S., Démoulin, P., Mandrini, C.H., Gulisano, A.M.: 2011, Dynamical evolution of a magnetic cloud from the Sun to 5.4 AU. Astron. Astrophys. 535, 52. ADSCrossRefGoogle Scholar
  17. Odstrcil, D., Pizzo, V.J.: 1999, Distortion of the interplanetary magnetic field by three-dimensional propagation of coronal mass ejections in a structured solar wind. J. Geophys. Res. 104(A12), 28225. ADSCrossRefGoogle Scholar
  18. Roussev, I.I., Gombosi, T.I., Sokolov, I.V., Velli, M., Manchester, W., DeZeeuw, D.L. IV, et al.: 2003, A three-dimensional model of the solar wind incorporating solar magnetogram observations. Astrophys. J. Lett. 595, L57. ADSCrossRefGoogle Scholar
  19. Smith, Z., Dryer, M., Ort, E., Murtagh, W.: 2000, Performance of interplanetary shock prediction model: STOA and ISPM. J. Atmos. Solar-Terr. Phys. 62, 1265. ADSCrossRefGoogle Scholar
  20. Thompson, W.T., Kliem, B., Török, T.: 2012, 3D reconstruction of a rotating erupting prominence. Solar Phys. 276, 241. ADSCrossRefGoogle Scholar
  21. Xie, H., Gopalswamy, N., St. Cyr, O.C.: 2013, Near-Sun flux rope structure of CMEs. Solar Phys., in this issue. doi: 10.1007/s11207-012-0209-0. Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • R.-S. Kim
    • 1
    Email author
  • N. Gopalswamy
    • 2
  • K.-S. Cho
    • 1
  • Y.-J. Moon
    • 3
  • S. Yashiro
    • 2
    • 4
  1. 1.Korea Astronomy and Space Science InstituteDaejeonKorea
  2. 2.NASA Goddard Space Flight CenterGreenbeltUSA
  3. 3.School of Space ResearchKyunghee UniversityYongin-shiKorea
  4. 4.Department of PhysicsThe Catholic University of AmericaWashingtonUSA

Personalised recommendations