Solar Physics

, Volume 283, Issue 2, pp 489–504 | Cite as

Alternating Twist Along an Erupting Prominence

  • W. T. ThompsonEmail author


Triangulation measurements using observations from the two Solar Terrestrial Relations Observatory (STEREO) spacecraft, combined with observations from the Solar Dynamics Observatory (SDO), are used to characterize the behavior of a prominence involved in two successive coronal mass ejections 6 – 7 December 2010. The STEREO separation at the time was 171.6, which was functionally equivalent to a separation of 8.4, and thus very favorable for feature co-identification above the limb. The first eruption at ≈ 14:16 UT on 6 December of the middle branch of the prominence starts off a series of magnetic reconfigurations in the right branch, which itself erupts at ≈ 2:06 UT the next day, about 12 hours after the first eruption. The cool prominence material seen at 304 Å drains back down to the surface, but a flux-rope-like magnetic structure is seen to erupt in both 195 Å by the STEREO/Extreme Ultraviolet Imager (EUVI), and in white light by the STEREO/COR1 inner coronagraph. In between the two eruptions, two different signs of helicity are seen in the measured twist of the right branch. This is interpreted to be caused by the overall prominence channel being composed of different segments with alternating helicity signs. The erupting parts on 6 and 7 December both show positive twist, but negative twist is seen in between these positive sections. Negative twist is consistent with the dextral chirality signs seen in the He ii line at 304 Å prior to both eruptions. However, during the period between the eruptions, a region of positive twist grows and replaces the region of negative twist, and finally erupts. We interpret these observations in the light of models that predict that helicity cancellation can be an important factor in the triggering of flares and coronal mass ejections.


Prominences, active Prominences, magnetic field Coronal mass ejections, initiation and propagation 



This work was funded under NASA Contract NNG06EB68C. We would like to acknowledge the helpful comments on an early draft of this work from H. Gilbert, J. Karpen, and T. Kucera, as well as from the anonymous reviewer. The STEREO/SECCHI data used here are produced by an international consortium of the Naval Research Laboratory (USA), Lockheed Martin Solar and Astrophysics Lab (USA), NASA Goddard Space Flight Center (USA), Rutherford Appleton Laboratory (UK), University of Birmingham (UK), Max-Planck-Institut für Sonnensystemforschung (Germany), Centre Spatiale de Liège (Belgium), Institut d’Optique Théorique et Appliqueé (France), and Institut d’Astrophysique Spatiale (France). The SDO/AIA and HMI data are courtesy of NASA/SDO and the AIA, EVE, and HMI science teams.

Supplementary material (3.6 mb) (MOV 3.6 MB) (7.5 mb) (MOV 7.5 MB) (593 kb) (MOV 593 kB) (MOV 27.0 MB) (MOV 7.6 MB)


  1. Bemporad, A., Mierla, M., Tripathi, D.: 2011, Rotation of an erupting filament observed by the STEREO EUVI and COR1 instruments. Astron. Astrophys. 531, A147. ADS:2011A&A...531A.147B, doi: 10.1051/0004-6361/201016297. ADSCrossRefGoogle Scholar
  2. Bi, Y., Jiang, Y.C., Yang, L.H., Zheng, R.S.: 2011, Nonradial eruption of a kinking filament observed from STEREO. New Astron. 16, 276 – 283. ADS:2011NewA...16..276B, doi: 10.1016/j.newast.2010.11.009. ADSCrossRefGoogle Scholar
  3. Bi, Y., Jiang, Y., Li, H., Hong, J., Zheng, R.: 2012, Eruption of a solar filament consisting of two threads. Astrophys. J. 758, 42. ADS:2012ApJ...758...42B, doi: 10.1088/0004-637X/758/1/42. ADSCrossRefGoogle Scholar
  4. Chae, J.: 2000, The magnetic helicity sign of filament chirality. Astrophys. J. 540, 115 – 118. ADS:2000ApJ...540L.115C, doi: 10.1086/312880. ADSCrossRefGoogle Scholar
  5. Chandra, R., Pariat, E., Schmeider, B., Mandrini, C.H., Uddin, W.: 2010, How can a negative magnetic helicity active region generate a positive helicity magnetic cloud? Solar Phys. 261, 127 – 148. ADS:2010SoPh..261..127C, doi: 10.1007/s11207-009-9470-2. ADSCrossRefGoogle Scholar
  6. DeVore, C.R., Antiochos, S.K.: 2005, Solar prominence interactions. Astrophys. J. 629, 1122 – 1134. ADS:2005ApJ...629.1122D, doi: 10.1086/431721. ADSCrossRefGoogle Scholar
  7. Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., Thompson, W.T., St. Cyr, O.C., Mentzell, E., Mehalick, K., Lemen, J.R., Wuelser, J.P., Duncan, D.W., Tarbell, T.D., Wolfson, C.J., Moore, A., Harrison, R.A., Waltham, N.R., Lang, J., Davis, C.J., Eyles, C.J., Mapson-Menard, H., Simnett, G.M., Halain, J.P., Defise, J.M., Mazy, E., Rochus, P., Mercier, R., Ravet, M.F., Delmotte, F., Auchere, F., Delaboudiniere, J.P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., Mcmullin, D.: 2008, Sun earth connection coronal and heliospheric investigation (SECCHI). Space Sci. Rev. 136, 67 – 115. ADS:2008SSRv..136...67H, doi: 10.1007/s11214-008-9341-4. ADSCrossRefGoogle Scholar
  8. Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: an introduction. Space Sci. Rev. 136, 5 – 16. ADS:2008SSRv..136....5K, doi: 10.1007/s11214-007-9277-0. ADSCrossRefGoogle Scholar
  9. Kusano, K., Maeshiro, T., Yokoyama, T., Sakurai, T.: 2004, The trigger mechanism of solar flares in a coronal arcade with reversed magnetic shear. Astrophys. J. 610, 537 – 549. ADS:2004ApJ...610..537K, doi: 10.1086/421547. ADSCrossRefGoogle Scholar
  10. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly on the Solar Dynamics Observatory. Solar Phys. 275, 17 – 40. ADS:2012SoPh..275...17L, doi: 10.1007/s11207-011-9776-8. ADSCrossRefGoogle Scholar
  11. Linton, M.G., Dahlburg, R.B., Antiochos, S.K.: 2001, Reconnection of twisted flux ropes as a function of contact angle. Astrophys. J. 553, 905 – 921. ADS:2001ApJ...553..905L, doi: 10.1086/320974. ADSCrossRefGoogle Scholar
  12. Liu, R., Kliem, B., Török, T., Liu, C., Titov, V.S., Lionello, R., Linker, J.A., Wang, H.: 2012, Slow rise and partial eruption of a double-decker filament. I. observations and interpretation. Astrophys. J. 756, 59. ADS:2012ApJ...756...59L, doi: 10.1088/0004-637X/756/1/59. ADSCrossRefGoogle Scholar
  13. Mackay, D.H., Karpen, J.T., Ballester, J.L., Schmieder, B., Aulanier, G.: 2010, Physics of solar prominences: II – Magnetic structure and dynamics. Space Sci. Rev. 151, 333 – 399. ADS:2010SSRv..151..333M, doi: 10.1007/s11214-010-9628-0. ADSCrossRefGoogle Scholar
  14. Martin, S.F.: 1998, Conditions for the formation and maintenance of filaments (Invited review). Solar Phys. 182, 107 – 137. ADS:1998SoPh..182..107M, doi: 10.1023/A:1005026814076. ADSCrossRefGoogle Scholar
  15. Martin, S.F.: 2003, Signs of helicity in solar prominences and related features. Adv. Space Res. 32, 1883 – 1893. ADS:2003AdSpR..32.1883M, doi: 10.1016/S0273-1177(03)90622-3. ADSCrossRefGoogle Scholar
  16. Martin, S.F., McAllister, A.H.: 1997, Predicting the sign of magnetic helicity in erupting filaments and coronal mass ejections. In: Crooker, N., Joselyn, J.A., Feynman, J. (eds.) Coronal Mass Ejections, American Geophysical Union, Washington, 127 – 138. CrossRefGoogle Scholar
  17. Martin, S.F., Bilimoria, R., Tracadas, P.W.: 1994, Magnetic field configurations basic to filament channels and filaments. In: Rutten, R.J., Schrijver, C.J. (eds.) Solar Surface Magnetism, Kluwer Academic, Dordrecht, 303 – 338. CrossRefGoogle Scholar
  18. Mok, Y., Mikić, Z., Linker, J.: 2001, Interaction of two magnetic loops in the solar corona. Astrophys. J. 555, 440 – 447. ADS:2001ApJ...555..440M, doi: 10.1086/321458. ADSCrossRefGoogle Scholar
  19. Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3 – 5. ADS:2012SoPh..275....3P, doi: 10.1007/s11207-011-9841-3. ADSCrossRefGoogle Scholar
  20. Romano, P., Zuccarello, F., Poedts, S., Soenen, A., Zuccarello, F.P.: 2009, Magnetic helicity and active filament configuration. Astron. Astrophys. 506, 895 – 900. ADS:2009A&A...506..895R, doi: 10.1051/0004-6361/200912425. ADSCrossRefGoogle Scholar
  21. Romano, P., Pariat, E., Sicari, M., Zuccarello, F.: 2011, A solar eruption triggered by the interaction between two magnetic flux systems with opposite magnetic helicity. Astron. Astrophys. 525, A13. ADS:2011A&A...525A..13R, doi: 10.1051/0004-6361/201014437. ADSCrossRefGoogle Scholar
  22. Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207 – 227. ADS:2012SoPh..275..207S, doi: 10.1007/s11207-011-9834-2. ADSCrossRefGoogle Scholar
  23. Thompson, W.T., Kliem, B., Török, T.: 2012, 3D reconstruction of a rotating erupting prominence. Solar Phys. 276, 241 – 259. ADS:2012SoPh..276..241T, doi: 10.1007/s11207-011-9868-5. ADSCrossRefGoogle Scholar
  24. Thompson, W.T.: 2011, Strong rotation of an erupting quiescent polar crown prominence. J. Atmos. Solar-Terr. Phys. 73(10), 1138 – 1147. ADS:2011JASTP..73.1138T, doi: 10.1016/j.jastp.2010.07.005. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Adnet Systems Inc.LanhamUSA

Personalised recommendations