Advertisement

Solar Physics

, Volume 279, Issue 1, pp 127–152 | Cite as

Coronal Density Structures and CMEs: Superior Solar Conjunctions of Mars Express, Venus Express, and Rosetta: 2004, 2006, and 2008

  • Martin PätzoldEmail author
  • Matthias Hahn
  • Silvia Tellmann
  • Bernd Häusler
  • Michael K. Bird
  • G. Leonard Tyler
  • Sami W. Asmar
  • Bruce T. Tsurutani
Article

Abstract

Coronal radio-sounding experiments were carried out using the S-band (2.3 GHz) and X-band (8.4 GHz) signals of the ESA Mars Express, Venus Express, and Rosetta spacecraft during five superior conjunctions occurring in 2004, 2006 (3×), and 2008/2009. Differential frequency and propagation delay (ranging) observations were recorded during these opportunities over the better part of a solar cycle, yielding information on the large-scale structure of the coronal electron-density distribution and its variations, including fluctuations on time scales from seconds to hours. These results concern primarily regions of slow solar wind because the radio propagation path is generally confined to the low heliolatitude regions by the conjunction. The mean frequency fluctuation and total electron content are determined as a function of heliocentric distance, and, with a few exceptions caused by streamers and CMEs, are found to be consistent with previous results from experiments on Ulysses. Dense coronal streamers and several coronal mass ejection (CME) events were identified in the radio-frequency data, some of which were observed in white light by the LASCO coronagraphs onboard SOHO. For those events with sufficient mutual coverage, good correlations are found between the electron-content fluctuations and structure imaged by the LASCO instrument.

Keywords

Corona Superior conjunction CME 

Notes

Acknowledgements

The Mars Express Radio Science Experiment (MaRS), the Rosetta Radio Science Investigations (RSI), and the Venus Express Radio Science Experiment (VeRa) are funded by the German Space Agency (DLR) under grants 50QP9909, 50QM0701 and 50OV0601. Support for Mars Express Radio Science at Stanford University is provided by NASA through JPL Contract 1217744. Support for the Multimission Radio Science Support Team is provided by NASA/JPL. Portions of this research were performed at the Jet Propulsion Laboratory, California Institute of Technology under contract with NASA.

We thank everyone involved in the Mars Express, Rosetta, and Venus Express projects at ESTEC, ESOC, ESAC, JPL, and the ESTRACK and DSN ground stations for their continuous support.

The SOHO/LASCO data used here are produced by a consortium of the Naval Research Laboratory (USA), Max-Planck-Institut für Sonnensystemforschung (Germany), Laboratoire d’Astronomie (France), and the University of Birmingham (UK). The SOHO/LASCO CME catalog is generated and maintained at the CDAW Data Center by NASA and The Catholic University of America in cooperation with the Naval Research Laboratory. SOHO is a project of international cooperation between ESA and NASA. The Solar Irradiance Platform historical irradiances plotted in Figure 2 are provided courtesy of W. Kent Tobiska and Space Environment Technologies. These historical irradiances have been developed with partial funding from the NASA UARS, TIMED, and SOHO missions.

Supplementary material

(WMV 2.8 MB)

(WMV 834 kB)

(WMV 1.1 MB)

References

  1. Anderson, J.D., Krisher, T.P., Borutzki, S.E., Connally, M.J., Eshe, P.M., Hotz, H.B., Kinslow, S., Kursinski, E.R., Light, L.B., Matousek, S.E., Moyd, K.I., Roth, D.C., Sweetnam, D.N., Taylor, A.H., Tyler, G.L., Gresh, D.L., Rosen, P.A.: 1987, Radio range measurements of coronal electron densities at 13 and 3.6 centimeter wavelengths during the 1985 solar occultation of Voyager 2. Astrophys. J. Lett. 323, L141 – L143. ADSCrossRefGoogle Scholar
  2. Armstrong, J.W., Woo, R.: 1981, Solar wind motion within 30 solar radii: Spacecraft radio scintillation observations. Astron. Astrophys. 103, 415 – 421. ADSGoogle Scholar
  3. Bird, M.K.: 1982, Coronal investigations with occulted spacecraft signals. Space Sci. Rev. 33, 99 – 126. ADSCrossRefGoogle Scholar
  4. Bird, M.K., Volland, H., Howard, R.A., Koomen, M.J., Michels, D.J., Sheeley, N.R. Jr., Amstrong, J.W., Seidel, B.L., Stelzried, C.T., Woo, R.: 1985, White-light and radio sounding observations of coronal transients. Solar Phys. 98, 341 – 368. ADS: 1985SoPh...98..341B, doi: 10.1007/BF00152465. ADSCrossRefGoogle Scholar
  5. Bird, M.K., Volland, H., Pätzold, M., Edenhofer, P., Asmar, S.W., Brenkle, J.P.: 1994, The coronal electron density distribution determined from dual-frequency ranging measurements during the 1991 solar conjunction of the Ulysses spacecraft. Astrophys. J. 426, 373 – 381. ADSCrossRefGoogle Scholar
  6. Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., et al.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357 – 402. ADS: 1995SoPh..162..357B, doi: 10.1007/BF00733434. ADSCrossRefGoogle Scholar
  7. Curdt, W., Wilhelm, K., Feng, L., Kamino, S.: 2008, Multi-spacecraft observations of polar coronal plumes. Astron. Astrophys. 481, L61 – L64. ADSCrossRefGoogle Scholar
  8. De Toma, G.: 2011, Evolution of coronal holes and implications for high-speed solar wind during the minimum between cycles 23 and 24. Solar Phys. doi: 10.1007/s11207-010-9677-2. Google Scholar
  9. Efimov, A.I., Chashei, I.V., Samoznaev, L.N., Andreev, V.E., Bird, M.K., Edenhofer, P., Plettemeier, D., Wohlmuth, R.: 2002, The outer scale of solar-wind turbulence from GALILEO coronal-sounding data. Astron. Zh. 79, 640 – 652 [Astron. Rep. 46, 579 – 590]. Google Scholar
  10. Efimov, A.I., Samoznaev, L.N., Bird, M.K., Chashei, I.V., Plettemeier, D.: 2008a, Solar wind turbulence during the solar cycle deduced from Galileo coronal radio-sounding experiments. Adv. Space Res. 42, 117 – 123. ADSCrossRefGoogle Scholar
  11. Efimov, A.I., Rudash, V.K., Samoznaev, L.N., Bird, M.K., Chashei, I.V., Plettemeier, D.: 2008b, Coronal radio-sounding detection of a CME during the 1997 Galileo solar conjunction. Adv. Space Res. 42, 110 – 116. ADSCrossRefGoogle Scholar
  12. Efimov, A.I., Lukanina, L.A., Samoznaev, L.N., Rudash, V.K., Chashei, I.V., Bird, M.K., Pätzold, M., Tellmann, S.: 2010a, Quasi-periodic fluctuations detected in Mars Express coronal radio sounding observations. In: Maksimovic, M., Issauntier, K., Meyer-Vernet, N., Moncuquet, M., Pantellini, F. (eds.) Solar Wind 12, AIP CP-1216, 90 – 93. Google Scholar
  13. Efimov, A.I., Lukanina, L.A., Samoznaev, L.N., Rudash, V.K., Chashei, I.V., Bird, M.K., Pätzold, M., Tellmann, S.: 2010b, Coronal radio sounding experiments with Mars Express: Scintillation spectra during low solar activity. In: Maksimovic, M., Issauntier, K., Meyer-Vernet, N., Moncuquet, M., Pantellini, F. (eds.) Solar Wind 12, AIP CP-1216, 94 – 97. Google Scholar
  14. Foukal, P.V.: 2004, Solar Astrophysics, Wiley-VCH, Weinheim. CrossRefGoogle Scholar
  15. Goldstein, R.M.: 1969, Superior conjunction of Pioneer 6. Science 166, 598 – 601. ADSCrossRefGoogle Scholar
  16. Goldstein, B.E.: 1998, The solar wind. In: Suess, S.T., Tsurutani, B.T. (eds.) From the Sun: Auroras, Magnetic Storms, Solar Flares, Cosmic Rays, AGU, Washington, 73 – 80. CrossRefGoogle Scholar
  17. Häusler, B., Pätzold, M., Tyler, G.L., Simpson, R.A., Bird, M.K., Dehant, V., Barriot, J.-P., Eidel, W., Mattei, R., Remus, S., Selle, J., Tellmann, S., Imamura, T.: 2006, Radio science investigations by VeRa onboard the Venus Express spacecraft. Planet. Space Sci. 54, 1315 – 1335. ADSCrossRefGoogle Scholar
  18. Hathaway, D.H.: 1998, The solar dynamo. In: Suess, S.T., Tsurutani, B.T. (eds.) From the Sun: Auroras, Magnetic Storms, Solar Flares, Cosmic Rays, AGU, Washington, 113 – 122. CrossRefGoogle Scholar
  19. Karl, J., Pätzold, M., Bird, M.K.: 1997, Coronal radio sounding: Non-Gaussian turbulence in the source regions of slow and fast solar wind. Geophys. Res. Lett. 24, 2881 – 2884. doi: 10.1029/97GL01888. ADSCrossRefGoogle Scholar
  20. Kinman, P.W.: 2002, Module 202, 34-m and 70-m Doppler. In: Sniffen, R.W. (ed.) DSN Telecommunications Link Design Handbook, Jet Propulsion Laboratory, Caltech, Pasadena. http://deepspace.jpl.nasa.gov/dsndocs/810-005/stationdata.cfm. Google Scholar
  21. Levy, G.S., Sato, T., Seidel, B.L., Stelzried, C.T., Ohlson, J.E., Rusch, W.V.T.: 1969, Pioneer 6: Measurement of transient Faraday rotation phenomena observed during solar occultation. Science 166, 596 – 598. ADSCrossRefGoogle Scholar
  22. McIntosh, S.W., Innes, D.E., De Pontieu, B., Leamon, R.J.: 2010, STEREO observations of quasi-periodically driven high velocity outflows in polar plumes. Astron. Astrophys. 510, L2 – L5. ADSCrossRefGoogle Scholar
  23. Mittal, N., Sharma, J., Tomar, V., Narain, U.: 2009, On distribution of CMEs speed in solar cycle 23. Planet. Space Sci. 57, 53 – 57. ADSCrossRefGoogle Scholar
  24. Morabito, D.D., Shambayati, S., Finley, S., Fort, D.: 2003, The Cassini May 2000 solar conjunction. IEEE Trans. Antennas Propag. 51, 201 – 219. ADSCrossRefGoogle Scholar
  25. Muhleman, D.O., Anderson, J.D.: 1981, Solar wind electron densities from Viking dual-frequency radio measurements. Astrophys. J. 247, 1093 – 1101. ADSCrossRefGoogle Scholar
  26. Pätzold, M., Tsurutani, B.T., Bird, M.K.: 1997, An estimate of large-scale solar wind density and velocity profiles in a coronal hole and the coronal streamer belt. J. Geophys. Res. 102, 24151 – 24160. ADSCrossRefGoogle Scholar
  27. Pätzold, M., Bird, M.K., Edenhofer, P., Asmar, S.W., McElrath, T.P.: 1995, Dual-frequency radio sounding of the solar corona during the 1995 conjunction of the Ulysses spacecraft. Geophys. Res. Lett. 22, 3313 – 3316. ADSCrossRefGoogle Scholar
  28. Pätzold, M., Neubauer, F.M., Carone, L., Hagermann, A., Stanzel, C., Häusler, B., Remus, S., Selle, J., Hagl, D., Hinson, D.P., Simpson, R.A., Tyler, G.L., Asmar, S.W., Axford, W.I., Hagfors, T., Barriot, J.-P., Cerisier, J.-C., Imamura, T., Oyama, K.-I., Janle, P., Kirchengast, G., Dehant, V.: 2004, MaRS: Mars Express Orbiter radio science. In: Wilson, A. (ed.) Mars Express: The Scientific Payload SP-1240, ESA, Noordwijk, 141 – 163. Google Scholar
  29. Pätzold, M., Häusler, B., Aksnes, K., Anderson, J.D., Asmar, S.W., Barriot, J.-P., Bird, M.K., Boehnhardt, H., Eidel, W., Grün, E., et al.: 2007, Rosetta radio science investigations (RSI). Space Sci. Rev. 128, 599 – 627. ADSCrossRefGoogle Scholar
  30. Schatten, K.H.: 1975, Coronal magnetic field models. Rev. Geophys. Space Phys. 13, 589 – 592. ADSCrossRefGoogle Scholar
  31. Sniffin, R.W.: 2000, Module 209, Open-loop radio science. In: Sniffen, R.W. (ed.) DSN Telecommunications Link Design Handbook, Jet Propulsion Laboratory, Caltech, Pasadena. http://deepspace.jpl.nasa.gov/dsndocs/810-005/stationdata.cfm. Google Scholar
  32. Tsurutani, B.T., Echer, E., Gonzalez, W.D.: 2011, The solar and interplanetary causes of the recent minimum in geomagnetic activity (MGA23): A combination of midlatitude coronal holes, low IMF Bz variances, low solar wind speeds and low solar magnetic fields. Ann. Geophys. 29, 839 – 849. ADSCrossRefGoogle Scholar
  33. Tsurutani, B.T., Gonzalez, W.D., Gonzalez, A.L.C., Guarnieri, F.L., Gopalswamy, N., Grande, M., Kamide, Y., Kasahara, Y., Lu, G., Mann, I., et al.: 2006, Corotating solar wind streams and recurrent geomagnetic activity: A review. J. Geophys. Res. 111, A07S01. doi: 10.1029/2005JA011273. ADSCrossRefGoogle Scholar
  34. Volland, H., Bird, M.K., Levy, G.S., Stelzried, C.T., Seidel, B.L.: 1977, Helios-1 Faraday rotation experiment: Results and interpretations of the solar occultations in 1975. J. Geophys. 42, 659 – 672. Google Scholar
  35. Wohlmuth, R., Plettemeier, D., Edenhofer, P., Bird, M.K., Asmar, S.W.: 1997, Analysis of Galileo Doppler measurements during the solar occultations in 1994 and 1995. In: Barbieri, C., Rahe, J.H., Johnson, T.V. (eds.) The Three Galileos: The Man, The Spacecraft, The Telescope, Kluwer, Dordrecht, 421 – 428. Google Scholar
  36. Woo, R.: 1978, Radial dependence of solar wind properties deduced from Helios 1/2 and Pioneer 10/11 radio scattering observations. Astrophys. J. 219, 727 – 739 [Erratum, Astrophys. J. 223, 704 – 705, 1978]. ADSCrossRefGoogle Scholar
  37. Woo, R., Armstrong, J.W.: 1979, Spacecraft radio scattering observations of the power spectrum of electron density fluctuations in the solar wind. J. Geophys. Res. 84, 7288 – 7296. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Martin Pätzold
    • 1
    Email author
  • Matthias Hahn
    • 1
  • Silvia Tellmann
    • 1
  • Bernd Häusler
    • 2
  • Michael K. Bird
    • 3
  • G. Leonard Tyler
    • 4
  • Sami W. Asmar
    • 5
  • Bruce T. Tsurutani
    • 5
  1. 1.Rheinisches Institut für UmweltforschungCologneGermany
  2. 2.Institut für RaumfahrttechnikUniversität der Bundeswehr MünchenNeubibergGermany
  3. 3.Argelander-Institut für AstronomieUniversität BonnBonnGermany
  4. 4.Department of Electrical EngineeringStanford UniversityStanfordUSA
  5. 5.Jet Propulsion LaboratoryCaltechPasadenaUSA

Personalised recommendations