Solar Physics

, Volume 283, Issue 1, pp 49–66 | Cite as

Automation of the Filament Tracking in the Framework of the HELIO Project

  • X. BonninEmail author
  • J. Aboudarham
  • N. Fuller
  • A. Csillaghy
  • R. Bentley


We present a new method to automatically track filaments over the solar disk. The filaments are first detected on Meudon Spectroheliograph Hα images of the Sun, applying the technique developed by Fuller, Aboudarham, and Bentley (Solar Phys. 227, 61, 2005). This technique combines cleaning processes, image segmentation based on region growing, and morphological parameter extraction, including the determination of filament skeletons. The coordinates of the skeleton pixels, given in a heliocentric system, are then converted to a more appropriate reference frame that follows the rotation of the Sun surface. In such a frame, a co-rotating filament is always located around the same position, and its skeletons (extracted from each image) are thus spatially close, forming a group of adjacent features. In a third step, the shape of each skeleton is compared with its neighbours using a curve-matching algorithm. This step will permit us to define the probability [P] that two close filaments in the co-rotating frame are actually the same one observed on two different images. At the end, the pairs of features, for which the corresponding probability is greater than a threshold value, are associated using tracking identification indices. On a representative sample of filaments, the good agreement between automated and manual tracking confirms the reliability of the technique to be applied on large data sets. This code is already used in the framework of the Heliophysics Integrated Observatory (HELIO) to populate a catalogue dedicated to solar and heliospheric features (HFC). An extension of this method to other filament observations, and possibly sunspots, faculae, and coronal-holes tracking, can also be envisaged.


Solar filaments Hα observations Automated tracking Image processing Virtual observatory HELIO HFC 



This work has been supported under the Heliospheric Integrated Observatory HELIO project. HELIO is a Research Infrastructures funded under the Capacities Specific Programme within the European Commission’s Seventh Framework Programme (FP7; Project No. 238969). The project started on 1 June 2009 and has a duration of 36 months. In addition, the authors want to thank Z. Mouradian from LESIA for the his valuable help, and the referee for helpful comments.


  1. Aboudarham, J., Scholl, I., Fuller, N., Fouesneau, M., Galametz, M., Gonon, F., Maire, A., Leroy, Y.: 2007, Automation of Meudon synoptic maps. In: Heinzel, P., Dorotovič, I., Rutten, R. J. (eds.) The Physics of Chromospheric Plasmas CS-368, Astron. Soc. Pac., San Francisco, 505. Google Scholar
  2. Ayache, N., Faugeras, O.D.: 1986, HYPER: a new approach for the recognition and positioning of two-dimensional objects. IEEE Trans. Pattern Anal. Mach. Intell. 8, 44 – 54. doi: 10.1109/TPAMI.1986.4767751. CrossRefGoogle Scholar
  3. Barra, V., Delouille, V., Kretzschmar, M., Hochedez, J.-F.: 2009, Fast and robust segmentation of solar EUV images: algorithm and results for solar cycle 23. Astron. Astrophys. 505, 361 – 371. doi: 10.1051/0004-6361/200811416. ADSCrossRefGoogle Scholar
  4. Bentley, R.D., Csillaghy, A., Aboudarham, J., Jacquey, C., Hapgood, M.A., Bocchialini, K., Messerotti, M., Brooke, J., Gallagher, P., Fox, P., Hurlburt, N., Roberts, D.A., Duarte, L.S.: 2011, HELIO: The Heliophysics Integrated Observatory. Adv. Space Res. 47, 2235 – 2239. doi: 10.1016/j.asr.2010.02.006. ADSCrossRefGoogle Scholar
  5. Bernasconi, P.N., Rust, D.M., Hakim, D.: 2005, Advanced automated solar filament detection and characterization code: description, performance, and results. Solar Phys. 228, 97 – 117. doi: 10.1007/s11207-005-2766-y. ADSCrossRefGoogle Scholar
  6. Buchlin, É., Mercier, C., Engin, S., Parenti, S., Vial, J.: 2010, Automated detection of filaments in SDO data. In: Boissier, S., Heydari-Malayeri, M., Samadi, R., Valls-Gabaud, D. (eds.) SF2A-2010: Ann. Meeting of the French Society of Astronomy and Astrophysics, Marseille, 297. Google Scholar
  7. Cox, A.N.: 2000, Allen’s Astrophysical Quantities, 4nd edn., Springer, New York. CrossRefGoogle Scholar
  8. Fuller, N., Aboudarham, J., Bentley, R.D.: 2005, Filament recognition and image cleaning on Meudon Hα spectroheliograms. Solar Phys. 227, 61 – 73. doi: 10.1007/s11207-005-8364-1. ADSCrossRefGoogle Scholar
  9. Gao, J., Wang, H., Zhou, M.: 2002, Development of an automatic filament disappearance detection system. Solar Phys. 205, 93 – 103. doi: 10.1023/A:1013851808367. ADSCrossRefGoogle Scholar
  10. Gilbert, H.R., Holzer, T.E., Burkepile, J.T., Hundhausen, A.J.: 2000, Active and eruptive prominences and their relationship to coronal mass ejections. Astrophys. J. 537, 503 – 515. doi: 10.1086/309030. ADSCrossRefGoogle Scholar
  11. Gonzalez, R.C., Woods, R.E.: 2002, Digital Image Processing, 2nd edn., Prentice Hall, Upper Saddle River. Google Scholar
  12. Gopalswamy, N., Shimojo, M., Lu, W., Yashiro, S., Shibasaki, K., Howard, R.A.: 2003, Prominence eruptions and coronal mass ejection: a statistical study using microwave observations. Astrophys. J. 586, 562 – 578. doi: 10.1086/367614. ADSCrossRefGoogle Scholar
  13. Higgins, P.A., Gallagher, P.T., McAteer, R.T.J., Bloomfield, D.S.: 2011, Solar magnetic feature detection and tracking for space weather monitoring. Adv. Space Res. 47, 2105 – 2117. doi: 10.1016/j.asr.2010.06.024. ADSCrossRefGoogle Scholar
  14. Joshi, A.D., Srivastava, N., Mathew, S.K.: 2010, Automated detection of filaments and their disappearance using full-disc Hα images. Solar Phys. 262, 425 – 436. doi: 10.1007/s11207-010-9528-1. ADSCrossRefGoogle Scholar
  15. Krista, L.D., Gallagher, P.T.: 2009, Automated coronal hole detection using local intensity thresholding techniques. Solar Phys. 256, 87 – 100. doi: 10.1007/s11207-009-9357-2. ADSCrossRefGoogle Scholar
  16. Lobzin, V.V., Cairns, I.H., Robinson, P.A., Steward, G., Patterson, G.: 2009, Automatic recognition of type III solar radio bursts: automated radio burst identification system method and first observations. Space Weather 70, S04002. doi: 10.1029/2008SW000425. ADSCrossRefGoogle Scholar
  17. Mackay, D.H., Karpen, J.T., Ballester, J.L., Schmieder, B., Aulanier, G.: 2010, Physics of solar prominences: II – Magnetic structure and dynamics. Space Sci. Rev. 151, 333 – 399. doi: 10.1007/s11214-010-9628-0. ADSCrossRefGoogle Scholar
  18. Mouradian, Z.: 1998, The new “solar activity synoptic maps” of Observatoire de Paris-Meudon. In: Balasubramaniam, K.S., Harvey, J., Rabin, D. (eds.) Synoptic Solar Physics CS-140, Astron. Soc. Pac., San Francisco, 197. Google Scholar
  19. Russ, J.C.: 2002, The Image Processing Handbook, 4th edn. CRC Press, Boca Raton. zbMATHGoogle Scholar
  20. Tandberg-Hanssen, E. (ed.): 1995, The Nature of Solar Prominences, Astrophysics and Space Science Library 199. Google Scholar
  21. Thompson, W.T.: 2006, Coordinate systems for solar image data. Astron. Astrophys. 449, 791 – 803. doi: 10.1051/0004-6361:20054262. ADSCrossRefGoogle Scholar
  22. Ulrich, R.K., Boyden, J.E.: 2006, Carrington coordinates and solar maps. Solar Phys. 235, 17 – 29. doi: 10.1007/s11207-006-0041-5. ADSCrossRefGoogle Scholar
  23. Wolfson, H.J.: 1990, On curve matching. IEEE Trans. Pattern Anal. Mach. Intell. 12(5), 483 – 489. doi: 10.1109/34.55108. CrossRefGoogle Scholar
  24. Zharkov, S., Zharkova, V.V., Ipson, S., Benkhalil, A.: 2005, Technique for automated recognition of sunspots on full-disk solar images. EURASIP J. Appl. Signal Process. 2005(15), 2573 – 2584. doi: 10.1155/ASP.2005.2573. zbMATHCrossRefGoogle Scholar
  25. Zharkova, V.V., Schetinin, V.: 2005, Filament recognition in solar images with the neural network technique. Solar Phys. 228, 137 – 148. doi: 10.1007/s11207-005-5622-1. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • X. Bonnin
    • 1
    Email author
  • J. Aboudarham
    • 1
  • N. Fuller
    • 1
  • A. Csillaghy
    • 2
  • R. Bentley
    • 3
  1. 1.LESIA, Observatoire de Paris, CNRS, UPMCUniversité Paris-DiderotMeudonFrance
  2. 2.Institute of 4D TechnologiesFHNWWindischSwitzerland
  3. 3.MSSLUniversity College LondonDorkingUK

Personalised recommendations