Advertisement

Solar Physics

, Volume 285, Issue 1–2, pp 411–423 | Cite as

Speeds and Arrival Times of Solar Transients Approximated by Self-similar Expanding Circular Fronts

  • C. MöstlEmail author
  • J. A. Davies
OBSERVATIONS AND MODELLING OF THE INNER HELIOSPHERE

Abstract

The NASA Solar TErrestrial RElations Observatory (STEREO) mission offered the possibility to forecast the arrival times, speeds, and directions of solar transients from outside the Sun–Earth line. In particular, we are interested in predicting potentially geoeffective interplanetary coronal mass ejections (ICMEs) from observations of density structures at large observation angles from the Sun (with the STEREO Heliospheric Imager instrument). We contribute to this endeavor by deriving analytical formulas concerning a geometric correction for the ICME speed and arrival time for the technique introduced by Davies et al. (Astrophys. J., 2012, in press), called self-similar expansion fitting (SSEF). This model assumes that a circle propagates outward, along a plane specified by a position angle (e.g., the ecliptic), with constant angular half-width (λ). This is an extension to earlier, more simple models: fixed-Φ fitting (λ=0°) and harmonic mean fitting (λ=90°). In contrast to previous models, this approach has the advantage of allowing one to assess clearly if a particular location in the heliosphere, such as a planet or spacecraft, might be expected to be hit by the ICME front. Our correction formulas are especially significant for glancing hits, where small differences in the direction greatly influence the expected speeds (up to 100 – 200 km s−1) and arrival times (up to two days later than the apex). For very wide ICMEs (2λ>120°), the geometric correction becomes very similar to the one derived by Möstl et al. (Astrophys. J. 741, 34, 2011) for the harmonic mean model. These analytic expressions can also be used for empirical or analytical models to predict the 1 AU arrival time of an ICME by correcting for effects of hits by the flank rather than the apex, if the width and direction of the ICME in a plane are known and a circular geometry of the ICME front is assumed.

Keywords

Arrival Time Heliocentric Distance Interplanetary Coronal Mass Ejection Corotating Interaction Region Heliospheric Imager 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 263252 [COMESEP]. This research was supported by a Marie Curie International Outgoing Fellowship within the 7th European Community Framework Programme. J.A.D acknowledges funding from the UK Space Agency. We thank the guest editor Noé Lugaz and the referee for ideas on how to simplify the final equations and their derivation.

References

  1. Burton, R.K., McPherron, R.L., Russell, C.T.: 1975, An empirical relationship between interplanetary conditions and Dst. J. Geophys. Res. 80, 4204. doi: 10.1029/JA080i031p04204. ADSCrossRefGoogle Scholar
  2. Byrne, J.P., Maloney, S.A., McAteer, R.T.J., Refojo, J.M., Gallagher, P.T.: 2010, Propagation of an Earth-directed coronal mass ejection in three dimensions. Nat. Commun. 1, 74. doi: 10.1038/ncomms1077. CrossRefGoogle Scholar
  3. Davies, J.A., Harrison, R.A., Rouillard, A.P., Sheeley, N.R., Perry, C.H., Bewsher, D., Davis, C.J., Eyles, C.J., Crothers, S.R., Brown, D.S.: 2009, A synoptic view of solar transient evolution in the inner heliosphere using the Heliospheric Imagers on STEREO. Geophys. Res. Lett. 36, 2102. doi: 10.1029/2008GL036182. ADSCrossRefGoogle Scholar
  4. Davies, J.A., Harrison, R.A., Perry, C.H., Möstl, C., Lugaz, N., Rollett, T., Davis, C.J., Crothers, S., Temmer, M., Eyles, C.J., Savani, N.P.: 2012, A self-similar expansion model for use in solar wind transient propagation studies. Astrophys. J. in press. Google Scholar
  5. Davis, C.J., Davies, J.A., Lockwood, M., Rouillard, A.P., Eyles, C.J., Harrison, R.A.: 2009, Stereoscopic imaging of an Earth-impacting solar coronal mass ejection: a major milestone for the STEREO mission. Geophys. Res. Lett. 36, 8102. doi: 10.1029/2009GL038021. ADSCrossRefGoogle Scholar
  6. Davis, C.J., de Koning, C.A., Davies, J.A., Biesecker, D., Millward, G., Dryer, M., Deehr, C., Webb, D.F., Schenk, K., Freeland, S.L., Möstl, C., Farrugia, C.J., Odstrcil, D.: 2011, A comparison of space weather analysis techniques used to predict the arrival of the Earth-directed CME and its shockwave launched on 8 April 2010. Space Weather 9, 1005. doi: 10.1029/2010SW000620. ADSCrossRefGoogle Scholar
  7. de Koning, C.A., Pizzo, V.J., Biesecker, D.A.: 2009, Geometric localization of CMEs in 3D space using STEREO beacon data: first results. Solar Phys. 256, 167. doi: 10.1007/s11207-009-9344-7. ADSCrossRefGoogle Scholar
  8. Eyles, C.J., Simnett, G.M., Cooke, M.P., Jackson, B.V., Buffington, A., Hick, P.P., Waltham, N.R., King, J.M., Anderson, P.A., Holladay, P.E.: 2003, The Solar Mass Ejection Imager (SMEI). Solar Phys. 217, 319. ADSCrossRefGoogle Scholar
  9. Eyles, C.J., Harrison, R.A., Davis, C.J., Waltham, N.R., Shaughnessy, B.M., Mapson-Menard, H.C.A., Bewsher, D., Crothers, S.R., Davies, J.A., Simnett, G.M., Howard, R.A., Moses, J.D., Newmark, J.S., Socker, D.G., Halain, J.P., Defise, J.M., Mazy, E., Rochus, P.: 2009, The heliospheric imagers onboard the STEREO mission. Solar Phys. 254, 387. doi: 10.1007/s11207-008-9299-0. ADSCrossRefGoogle Scholar
  10. Gopalswamy, N., Lara, A., Yashiro, S., Kaiser, M.L., Howard, R.A.: 2001, Predicting the 1-AU arrival times of coronal mass ejections. J. Geophys. Res. 106, 29207. doi: 10.1029/2001JA000177. ADSCrossRefGoogle Scholar
  11. Gopalswamy, N., Davila, J.M., St. Cyr, O.C., Sittler, E.C., Auchère, F., Duvall, T.L., Hoeksema, J.T., Maksimovic, M., MacDowall, R.J., Szabo, A., Collier, M.R.: 2011, Earth-Affecting Solar Causes Observatory (EASCO): a potential international living with a star mission from Sun–Earth L5. J. Atmos. Solar-Terr. Phys. 73, 658. doi: 10.1016/j.jastp.2011.01.013. ADSCrossRefGoogle Scholar
  12. Howard, T.A., Tappin, S.J.: 2009, Interplanetary coronal mass ejections observed in the heliosphere: 1. Review of theory. Space Sci. Rev. 147, 31. doi: 10.1007/s11214-009-9542-5. ADSCrossRefGoogle Scholar
  13. Kahler, S.W., Webb, D.F.: 2007, V arc interplanetary coronal mass ejections observed with the Solar Mass Ejection Imager. J. Geophys. Res. 112, 9103. doi: 10.1029/2007JA012358. CrossRefGoogle Scholar
  14. Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: an introduction. Space Sci. Rev. 136, 5. doi: 10.1007/s11214-007-9277-0. ADSCrossRefGoogle Scholar
  15. Kilpua, E.K.J., Jian, L.K., Li, Y., Luhmann, J.G., Russell, C.T.: 2011, Multipoint ICME encounters: pre-STEREO and STEREO observations. J. Atmos. Solar-Terr. Phys. 73, 1228. doi: 10.1016/j.jastp.2010.10.012. ADSCrossRefGoogle Scholar
  16. Liu, Y., Davies, J.A., Luhmann, J.G., Vourlidas, A., Bale, S.D., Lin, R.P.: 2010a, Geometric triangulation of imaging observations to track coronal mass ejections continuously out to 1 AU. Astrophys. J. Lett. 710, L82. doi: 10.1088/2041-8205/710/1/L82. ADSCrossRefGoogle Scholar
  17. Liu, Y., Thernisien, A., Luhmann, J.G., Vourlidas, A., Davies, J.A., Lin, R.P., Bale, S.D.: 2010b, Reconstructing coronal mass ejections with coordinated imaging and in situ observations: global structure, kinematics, and implications for space weather forecasting. Astrophys. J. 722, 1762. doi: 10.1088/0004-637X/722/2/1762. ADSCrossRefGoogle Scholar
  18. Liu, Y., Luhmann, J.G., Bale, S.D., Lin, R.P.: 2011, Solar source and heliospheric consequences of the 2010 April 3 coronal mass ejection: a comprehensive view. Astrophys. J. 734, 84. doi: 10.1088/0004-637X/734/2/84. ADSCrossRefGoogle Scholar
  19. Lugaz, N.: 2010, Accuracy and limitations of fitting and stereoscopic methods to determine the direction of coronal mass ejections from heliospheric imagers observations. Solar Phys. 267, 411. doi: 10.1007/s11207-010-9654-9. ADSCrossRefGoogle Scholar
  20. Lugaz, N., Hernandez-Charpak, J.N., Roussev, I.I., Davis, C.J., Vourlidas, A., Davies, J.A.: 2010, Determining the azimuthal properties of coronal mass ejections from multi-spacecraft remote-sensing observations with STEREO SECCHI. Astrophys. J. 715, 493. doi: 10.1088/0004-637X/715/1/493. ADSCrossRefGoogle Scholar
  21. Lugaz, N., Kintner, P., Möstl, C., Jian, L.K., Davis, C.J., Farrugia, C.J.: 2012, Heliospheric observations of STEREO-directed coronal mass ejections in 2008 – 2010: lessons for future observations of Earth-directed CMEs. Solar Phys. in press. Google Scholar
  22. Lugaz, N., Roussev, I.I., Gombosi, T.I.: 2011, Determining CME parameters by fitting heliospheric observations: numerical investigation of the accuracy of the methods. Adv. Space Res. 48, 292. doi: 10.1016/j.asr.2011.03.015. ADSCrossRefGoogle Scholar
  23. Lugaz, N., Vourlidas, A., Roussev, I.I.: 2009, Deriving the radial distances of wide coronal mass ejections from elongation measurements in the heliosphere – application to CME–CME interaction. Ann. Geophys. 27, 3479. ADSCrossRefGoogle Scholar
  24. Maloney, S.A., Gallagher, P.T.: 2010, Solar wind drag and the kinematics of interplanetary coronal mass ejections. Astrophys. J. Lett. 724, L127. doi: 10.1088/2041-8205/724/2/L127. ADSCrossRefGoogle Scholar
  25. Mierla, M., Inhester, B., Antunes, A., Boursier, Y., Byrne, J.P., Colaninno, R., Davila, J., de Koning, C.A., Gallagher, P.T., Gissot, S., Howard, R.A., Howard, T.A., Kramar, M., Lamy, P., Liewer, P.C., Maloney, S., Marqué, C., McAteer, R.T.J., Moran, T., Rodriguez, L., Srivastava, N., St. Cyr, O.C., Stenborg, G., Temmer, M., Thernisien, A., Vourlidas, A., West, M.J., Wood, B.E., Zhukov, A.N.: 2010, On the 3-D reconstruction of coronal mass ejections using coronagraph data. Ann. Geophys. 28, 203. doi: 10.5194/angeo-28-203-2010. ADSCrossRefGoogle Scholar
  26. Möstl, C., Farrugia, C.J., Temmer, M., Miklenic, C., Veronig, A.M., Galvin, A.B., Leitner, M., Biernat, H.K.: 2009, Linking remote imagery of a coronal mass ejection to its in situ signatures at 1 AU. Astrophys. J. Lett. 705, L180. doi: 10.1088/0004-637X/705/2/L180. ADSCrossRefGoogle Scholar
  27. Möstl, C., Rollett, T., Lugaz, N., Farrugia, C.J., Davies, J.A., Temmer, M., Veronig, A.M., Harrison, R.A., Crothers, S., Luhmann, J.G., Galvin, A.B., Zhang, T.L., Baumjohann, W., Biernat, H.K.: 2011, Arrival time calculation for interplanetary coronal mass ejections with circular fronts and application to STEREO observations of the 2009 February 13 eruption. Astrophys. J. 741, 34. doi: 10.1088/0004-637X/741/1/34. ADSCrossRefGoogle Scholar
  28. Möstl, C., Temmer, M., Rollett, T., Farrugia, C.J., Liu, Y., Veronig, A.M., Leitner, M., Galvin, A.B., Biernat, H.K.: 2010, STEREO and Wind observations of a fast ICME flank triggering a prolonged geomagnetic storm on 5 – 7 April 2010. Geophys. Res. Lett. 37, L24103. doi: 10.1029/2010GL045175. ADSCrossRefGoogle Scholar
  29. Richardson, I.G., Cane, H.V.: 1993, Signatures of shock drivers in the solar wind and their dependence on the solar source location. J. Geophys. Res. 98, 15295. ADSCrossRefGoogle Scholar
  30. Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996 – 2009): catalog and summary of properties. Solar Phys. 264, 189. doi: 10.1007/s11207-010-9568-6. ADSCrossRefGoogle Scholar
  31. Rodriguez, L., Mierla, M., Zhukov, A.N., West, M., Kilpua, E.: 2011, Linking remote-sensing and in situ observations of coronal mass ejections using STEREO. Solar Phys. 270, 561. doi: 10.1007/s11207-011-9784-8. ADSCrossRefGoogle Scholar
  32. Rouillard, A.P., Davies, J.A., Forsyth, R.J., Rees, A., Davis, C.J., Harrison, R.A., Lockwood, M., Bewsher, D., Crothers, S.R., Eyles, C.J., Hapgood, M., Perry, C.H.: 2008, First imaging of corotating interaction regions using the STEREO spacecraft. Geophys. Res. Lett. 35, 10110. doi: 10.1029/2008GL033767. ADSCrossRefGoogle Scholar
  33. Rouillard, A.P., Davies, J.A., Forsyth, R.J., Savani, N.P., Sheeley, N.R., Thernisien, A., Zhang, T., Howard, R.A., Anderson, B., Carr, C.M., Tsang, S., Lockwood, M., Davis, C.J., Harrison, R.A., Bewsher, D., Fränz, M., Crothers, S.R., Eyles, C.J., Brown, D.S., Whittaker, I., Hapgood, M., Coates, A.J., Jones, G.H., Grande, M., Frahm, R.A., Winningham, J.D.: 2009, A solar storm observed from the Sun to Venus using the STEREO, Venus Express, and MESSENGER spacecraft. J. Geophys. Res. 114, 7106. doi: 10.1029/2008JA014034. CrossRefGoogle Scholar
  34. Savani, N.P., Rouillard, A.P., Davies, J.A., Owens, M.J., Forsyth, R.J., Davis, C.J., Harrison, R.A.: 2009, The radial width of a coronal mass ejection between 0.1 and 0.4 AU estimated from the Heliospheric Imager on STEREO. Ann. Geophys. 27, 4349. doi: 10.5194/angeo-27-4349-2009. ADSCrossRefGoogle Scholar
  35. Savani, N.P., Owens, M.J., Rouillard, A.P., Forsyth, R.J., Davies, J.A.: 2010, Observational evidence of a coronal mass ejection distortion directly attributable to a structured solar wind. Astrophys. J. Lett. 714, L128. doi: 10.1088/2041-8205/714/1/L128. ADSCrossRefGoogle Scholar
  36. Savani, N.P., Owens, M.J., Rouillard, A.P., Forsyth, R.J., Kusano, K., Shiota, D., Kataoka, R.: 2011, Evolution of coronal mass ejection morphology with increasing heliocentric distance. I. Geometrical analysis. Astrophys. J. 731, 109. doi: 10.1088/0004-637X/731/2/109. ADSCrossRefGoogle Scholar
  37. Schwenn, R., dal Lago, A., Huttunen, E., Gonzalez, W.D.: 2005, The association of coronal mass ejections with their effects near the Earth. Ann. Geophys. 23, 1033. ADSCrossRefGoogle Scholar
  38. Sheeley, N.R., Walters, J.H., Wang, Y., Howard, R.A.: 1999, Continuous tracking of coronal outflows: two kinds of coronal mass ejections. J. Geophys. Res. 104, 24739. doi: 10.1029/1999JA900308. ADSCrossRefGoogle Scholar
  39. Siscoe, G., Schwenn, R.: 2006, CME disturbance forecasting. Space Sci. Rev. 123, 453. doi: 10.1007/s11214-006-9024-y. ADSCrossRefGoogle Scholar
  40. Tappin, S.J., Howard, T.A.: 2009, Interplanetary coronal mass ejections observed in the heliosphere: 2. Model and data comparison. Space Sci. Rev. 147, 55. doi: 10.1007/s11214-009-9550-5. ADSCrossRefGoogle Scholar
  41. Temmer, M., Preiss, S., Veronig, A.M.: 2009, CME projection effects studied with STEREO/COR and SOHO/LASCO. Solar Phys. 256, 183. doi: 10.1007/s11207-009-9336-7. ADSCrossRefGoogle Scholar
  42. Thernisien, A., Vourlidas, A., Howard, R.A.: 2009, Forward modeling of coronal mass ejections using STEREO/SECCHI data. Solar Phys. 256, 130. doi: 10.1007/s11207-009-9346-5. CrossRefGoogle Scholar
  43. Vršnak, B., Gopalswamy, N.: 2002, Influence of the aerodynamic drag on the motion of interplanetary ejecta. J. Geophys. Res. 107, 1019. doi: 10.1029/2001JA000120. CrossRefGoogle Scholar
  44. Vršnak, B., Žic, T., Falkenberg, T.V., Möstl, C., Vennerstrom, S., Vrbanec, D.: 2010, The role of aerodynamic drag in propagation of interplanetary coronal mass ejections. Astron. Astrophys. 512, A43. doi: 10.1051/0004-6361/200913482. ADSCrossRefGoogle Scholar
  45. Vršnak, B., Žic, T., Vrbanec, D., Dumbović, D., Veronig, A., Temmer, M., Möstl, C., Rollett, T., Moon, Y.-J., Lulić, S., Shanmugaraju, A.: 2012, Propagation of interplanetary coronal mass ejections: the drag-based model. Solar Phys. in this issue. Google Scholar
  46. Wood, B.E., Howard, R.A., Socker, D.G.: 2010, Reconstructing the morphology of an evolving coronal mass ejection. Astrophys. J. 715, 1524. doi: 10.1088/0004-637X/715/2/1524. ADSCrossRefGoogle Scholar
  47. Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.C., Plunkett, S.P., Rich, N.B., Howard, R.A.: 2004, A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res. 109, 7105. doi: 10.1029/2003JA010282. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Space Science LaboratoryUniversity of CaliforniaBerkeleyUSA
  2. 2.Institute of PhysicsUniversity of GrazGrazAustria
  3. 3.RAL SpaceHarwell OxfordDidcotUK

Personalised recommendations