Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Particle Acceleration in the Presence of Weak Turbulence at an X-Type Neutral Point


We simulate the likely noisy situation near a reconnection region by superposing many 2D linear reconnection eigenmodes. The superposition of modes on the steady state X-type magnetic field creates multiple X- and O-type neutral points close to the original neutral point and so increases the size of the non-adiabatic region. We study test particle trajectories of initially thermal protons in these fields. Protons become trapped in this region and are accelerated by the turbulent electric field to energies up to 1 MeV in time scales relevant to solar flares. Higher energies are achieved due to the interaction of particles with increasingly turbulent electric and magnetic fields.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8


  1. Abramowitz, M., Stegun, I.A.: 1965, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical tables. Dover, New York.

  2. Aschwanden, M.J., Nightingale, R.W.: 2005, Elementary loop structures in the solar corona analyzed from TRACE triple-filter images. Astrophys. J. 633, 499 – 517.

  3. Aschwanden, M.J., Fletcher, L., Schrijver, C.J., Alexander, D.: 1999, Coronal loop oscillations observed with the transition region and coronal explorer. Astrophys. J. 520, 880 – 894.

  4. Bulanov, S.V., Syrovatskii, S.I.: 1980, MHD oscillations and waves near a magnetic null line. Sov. J. Plasma Phys. 6, 1205 – 1218.

  5. Chen, F.F., Torreblanca, H.: 1984, Introduction to Plasma Physics and Controlled Fusion, 2nd edn. Plenum, New York.

  6. Craig, I.J., Watson, P.G.: 1992, Fast dynamic reconnection at X-type neutral points. Astrophys. J. 393, 385 – 395.

  7. Craig, I.J.D., McClymont, A.N.: 1991, Dynamic magnetic reconnection at an X-type neutral point. Astrophys. J. Lett. 371, L41 – L44.

  8. Craig, I.J.D., McClymont, A.N.: 1993, Linear theory of fast reconnection at an X-type neutral point. Astrophys. J. 405, 207 – 215.

  9. Dalla, S., Browning, P.K.: 2005, Particle acceleration at a three-dimensional reconnection site in the solar corona. Astron. Astrophys. 436, 1103 – 1111.

  10. De Moortel, I., Ireland, J., Walsh, R.W.: 2000, Observation of oscillations in coronal loops. Astron. Astrophys. 355, L23 – L26.

  11. De Moortel, I., Ireland, J., Hood, A.W., Walsh, R.W.: 2002, The detection of 3 & 5 min period oscillations in coronal loops. Astron. Astrophys. 387, L13 – L16.

  12. Foukal, P., Little, R., Gilliam, L.: 1987, Paschen-line Stark-broadening as an electric field diagnostic in erupting prominences. Solar Phys. 114, 65 – 73.

  13. Furth, H.P., Killeen, J., Rosenbluth, M.N.: 1963, Finite-resistivity instabilities of a Sheet Pinch. Phys. Fluids 6, 459 – 484.

  14. Gruszecki, M., Vasheghani Farahani, S., Nakariakov, V.M., Arber, T.D.: 2011, Magnetoacoustic shock formation near a magnetic null point. Astron. Astrophys. 531, A63.

  15. Guo, J.-N., Büchner, J., Otto, A., Santos, J., Marsch, E., Gan, W.-Q.: 2010, Is the 3-D magnetic null point with a convective electric field an efficient particle accelerator? Astron. Astrophys. 513, A73.

  16. Hamilton, B., Fletcher, L., McClements, K.G., Thyagaraja, A.: 2005, Electron acceleration at reconnecting X-points in solar flares. Astrophys. J. 625, 496 – 505.

  17. Hassam, A.B.: 1992, Reconnection of stressed magnetic fields. Astrophys. J. 399, 159 – 163.

  18. Kanbach, G., Bertsch, D.L., Fichtel, C.E., Hartman, R.C., Hunter, S.D., Kniffen, D.A., Kwok, P.W., Lin, Y.C., Mattox, J.R., Mayer-Hasselwander, H.A.: 1993, Detection of a long-duration solar gamma-ray flare on June 11, 1991 with EGRET on COMPTON-GRO. Astron. Astrophys. Suppl. Ser. 97, 349 – 353.

  19. Lin, R.P., Krucker, S., Hurford, G.J., Smith, D.M., Hudson, H.S., Holman, G.D., Schwartz, R.A., Dennis, B.R., Share, G.H., Murphy, R.J., Emslie, A.G., Johns-Krull, C., Vilmer, N.: 2003, RHESSI observations of particle acceleration and energy release in an intense solar gamma-ray line flare. Astrophys. J. Lett. 595, L69 – L76.

  20. Litvinenko, Y.E.: 1996, Particle acceleration in reconnecting current sheets with a nonzero magnetic field. Astrophys. J. 462, 997 – 1004.

  21. Litvinenko, Y.E.: 2003, Particle acceleration by a time-varying electric field in merging magnetic fields. Solar Phys. 216, 189 – 203.

  22. Liu, C., Wang, H.: 2009, Reconnection electric field and hardness of X-ray emission of solar flares. Astrophys. J. Lett. 696, L27 – L31.

  23. McLaughlin, J., Hood, A., De Moortel, I.: 2010, Review article: MHD wave propagation near coronal null points of magnetic fields. Space Sci. Rev., 1 – 32.

  24. Parker, E.N.: 1963, The solar-flare phenomenon and the theory of reconnection and annihilation of magnetic fields. Astrophys. J. 8, 177 – 211.

  25. Petkaki, P.: 1996, Particle acceleration in dynamical collisionless reconnection. PhD thesis, University of Glasgow.

  26. Petkaki, P., Freeman, M.P.: 2008, Nonlinear dependence of anomalous ion-acoustic resistivity on electron drift velocity. Astrophys. J. 686, 686 – 693.

  27. Petkaki, P., MacKinnon, A.L.: 1997, Particle acceleration in dynamical collisionless reconnection. Solar Phys. 172, 279 – 286.

  28. Petkaki, P., MacKinnon, A.L.: 2007, Particle acceleration by fluctuating electric fields at a magnetic field null point. Astron. Astrophys. 472, 623 – 632.

  29. Petkaki, P., MacKinnon, A.L.: 2011, Acceleration of charged particles by fluctuating and steady electric fields in a X-type magnetic field. Adv. Space Res. 48, 884 – 898.

  30. Petschek, H.E.: 1964, Magnetic field annihilation. NASA Spec. Publ. 50, 425 – 439.

  31. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: 1992, Numerical recipes in FORTRAN. The Art of Scientific Computing. Cambridge University Press, Cambridge.

  32. Priest, E., Forbes, T.: 2000, Magnetic Reconnection. Cambridge University Press, Cambridge.

  33. Somov, B.V., Oreshina, I.V., Kovalenko, I.A.: 2008, Magnetic reconnection, electric field, and particle acceleration in the July 14, 2000 solar flare. Astron. Lett. 34, 327 – 336.

  34. Speiser, T.W.: 1965, Particle trajectories in model current sheets, 1, analytical solutions. J. Geophys. Res. 70, 4219 – 4226.

  35. Sweet, P.A.: 1958, The neutral point theory of solar flares. In: Lehnert, B. (ed.) Electromagnetic Phenomena in Cosmical Physics, IAU Symposium 6, 123 – 134.

  36. Verwichte, E., Aschwanden, M.J., Van Doorsselaere, T., Foullon, C., Nakariakov, V.M.: 2009, Seismology of a large solar coronal loop from EUVI/STEREO observations of its transverse oscillation. Astrophys. J. 698, 397 – 404.

  37. Vilmer, N., MacKinnon, A.L., Trottet, G., Barat, C.: 2003, High energy particles accelerated during the large solar flare of 1990 May 24: X/γ-ray observations. Astron. Astrophys. 412, 865 – 874.

  38. Wang, R., Wang, J.: 2006, Spectra and solar energetic protons over 20 GeV in Bastille Day event. Astropart. Phys. 25, 41 – 46.

  39. White, S.M., Benz, A.O., Christe, S., Fárnik, F., Kundu, M.R., Mann, G., Ning, Z., Raulin, J.-P., Silva-Válio, A.V.R., Saint-Hilaire, P., Vilmer, N., Warmuth, A.: 2011, The relationship between solar radio and hard X-ray emission. Space Sci. Rev. 159, 225 – 261.

Download references


CAB acknowledges support from STFC and the British Antarctic Survey via a CASE studentship, and would like to thank Dr M. Freeman and Prof. Tom Van Doorsselaere for useful discussions. PP acknowledges support from the STFC Rolling Grant of Astrophysical Fluid Dynamics/Atomic Astrophysics Group (DAMTP). ALM thanks STFC for support through Rolling Grant ST/F002149/1.

Author information

Correspondence to C. A. Burge.

Additional information

Advances in European Solar Physics

Guest Editors: Valery M. Nakariakov, Manolis K. Georgoulis, and Stefaan Poedts


Appendix A: The Hypergeometric Function

2 F 1(a,b;c;z) is given by Abramowitz and Stegun (1965), Chapter 15:

$$ _2F_1(a,b;c;z)= \displaystyle\sum \limits _{i=0}^n \frac{(a)_n(b)_n}{(c)_n}\frac{z^n}{n!},$$

where (x) n =x(x+1)(x+2)⋯(x+n−1). Equation (8) converges only for |z|<1. An efficient evaluation for |z|>1 is achieved via a transformation formula (Abramowitz and Stegun 1965):


For the calculation of the magnetic field perturbation, the derivative of the hypergeometric function is used, which is given by Abramowitz and Stegun (1965) as:


Appendix B: Explicit Forms of Electric and Magnetic Fields

The electric fields we use are the same as those given in Petkaki and MacKinnon (1997).

$$\overline{E_z}=A_0\bigl[\exp(-\kappa t)\bigl[\kappa \bigl(\cos(\omega t)f_\Re \sin(\omega t)f_\Im\bigr)+\omega \bigl(\cos(\omega t)f_\Im+\sin(\omega t)f_\Re\bigr)\bigr]\bigr],$$

A 0 is the amplitude of the fluctuation, which we have chosen to be 1×10−4 for all modes. η is the resistivity, f is the hypergeometric function and f′ is its derivative. Bars denote quantities which are in our dimensionless units.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Burge, C.A., Petkaki, P. & MacKinnon, A.L. Particle Acceleration in the Presence of Weak Turbulence at an X-Type Neutral Point. Sol Phys 280, 575–590 (2012).

Download citation


  • Flares, energetic particles
  • Energetic particles, acceleration
  • Energetic particles, protons
  • Turbulence
  • Magnetic reconnection, theory