Advertisement

Solar Physics

, Volume 281, Issue 1, pp 53–65 | Cite as

Coronal Magnetic Field Structure and Evolution for Flaring AR 11117 and Its Surroundings

  • Tilaye TadesseEmail author
  • T. Wiegelmann
  • B. Inhester
  • A. Pevtsov
THE SUN 360

Abstract

In this study, photospheric vector magnetograms obtained with the Synoptic Optical Long-term Investigations of the Sun (SOLIS) survey are used as boundary conditions to model three-dimensional nonlinear force-free (NLFF) coronal magnetic fields as a sequence of NLFF equilibria in spherical geometry. We study the coronal magnetic field structure inside an active region and its temporal evolution. We compare the magnetic field configuration obtained from NLFF extrapolation before and after the flaring event in active region (AR) 11117 and its surroundings observed on 27 October 2010, and we also compare the magnetic field topologies and the magnetic energy densities and study the connectivities between AR 11117 and its surroundings. During the investigated time period, we estimate the change in free magnetic energy from before to after the flare to be 1.74×1032 erg, which represents about 13.5 % of the NLFF magnetic energy before the flare. In this study, we find that electric currents from AR 11117 to its surroundings were disrupted after the flare.

Keywords

Solar flare Magnetic fields Photosphere Corona 

Notes

Acknowledgements

SOLIS/VSM vector magnetograms are produced cooperatively by NSF/NSO and NASA/LWS. The National Solar Observatory (NSO) is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation. Tilaye Tadesse Asfaw acknowledges a fellowship of the International Max-Planck Research School at the Max-Planck Institute for Solar System Research. The work of T. Wiegelmann was supported by DLR-grant 50 OC 0501.

References

  1. Aly, J.J.: 1989, Solar Phys. 120, 19. ADSCrossRefGoogle Scholar
  2. Amari, T., Aly, J.: 2010, Astron. Astrophys. 522, A52. ADSCrossRefGoogle Scholar
  3. Amari, T., Boulmezaoud, T.Z., Aly, J.J.: 2006, Astron. Astrophys. 446, 691. ADSzbMATHCrossRefGoogle Scholar
  4. Amari, T., Boulmezaoud, T.Z., Mikić, Z.: 1999, Astron. Astrophys. 350, 1051. ADSGoogle Scholar
  5. Amari, T., Aly, J.J., Luciani, J.F., Boulmezaoud, T.Z., Mikic, Z.: 1997, Solar Phys. 174, 129. ADSCrossRefGoogle Scholar
  6. Bleybel, A., Amari, T., van Driel-Gesztelyi, L., Leka, K.D.: 2002, Astron. Astrophys. 395, 685. ADSCrossRefGoogle Scholar
  7. DeRosa, M.L., Schrijver, C.J., Barnes, G., Leka, K.D., Lites, B.W., Aschwanden, M.J., et al.: 2009, Astrophys. J. 696, 1780. ADSCrossRefGoogle Scholar
  8. Gary, G.A.: 2001, Solar Phys. 203, 71. ADSCrossRefGoogle Scholar
  9. Inhester, B., Wiegelmann, T.: 2006, Solar Phys. 235, 201. ADSCrossRefGoogle Scholar
  10. Jing, J., Chen, P.F., Wiegelmann, T., Xu, Y., Park, S.H., Wang, H.: 2009, Astrophys. J. 696, 84. ADSCrossRefGoogle Scholar
  11. Jing, J., Tan, C., Yuan, Y., Wang, B., Wiegelmann, T., Xu, Y., Wang, H.: 2010, Astrophys. J. 713, 440. ADSCrossRefGoogle Scholar
  12. Metcalf, T.R., De Rosa, M.L., Schrijver, C.J., Barnes, G., van Ballegooijen, A.A., Wiegelmann, T., Wheatland, M.S., Valori, G., McTtiernan, J.M.: 2008, Solar Phys. 247, 269. ADSCrossRefGoogle Scholar
  13. Molodensky, M.M.: 1969, Soviet Astron. 12, 585. ADSGoogle Scholar
  14. Murray, S.A., Bloomfield, D.S., Gallagher, P.T.: 2012, Solar Phys. 277, 45. ADSCrossRefGoogle Scholar
  15. Priest, E.R., Forbes, T.G.: 2002, Astron. Astrophys. Rev. 10, 313. ADSCrossRefGoogle Scholar
  16. Régnier, S., Canfield, R.C.: 2006, Astron. Astrophys. 451, 319. ADSCrossRefGoogle Scholar
  17. Régnier, S., Priest, E.R.: 2007, Astrophys. J. Lett. 669, L53. ADSCrossRefGoogle Scholar
  18. Schrijver, C.J.: 2009, Adv. Space Res. 43, 739. ADSCrossRefGoogle Scholar
  19. Schrijver, C.J., Title, A.M.: 2011, J. Geophys. Res. 116, A04108. ADSCrossRefGoogle Scholar
  20. Schrijver, C.J., Derosa, M.L., Metcalf, T.R., Liu, Y., McTiernan, J., Régnier, S., Valori, G., Wheatland, M.S., Wiegelmann, T.: 2006, Solar Phys. 235, 161. ADSCrossRefGoogle Scholar
  21. Su, Y., Golub, L., van Ballegooijen, A., Deluca, E.E., Reeves, K.K., Sakao, T., Kano, R., Narukage, N., Shibasaki, K.: 2007, Publ. Astron. Soc. Japan 59, 785. ADSGoogle Scholar
  22. Tadesse, T., Wiegelmann, T., Inhester, B.: 2009, Astron. Astrophys. 508, 421. ADSzbMATHCrossRefGoogle Scholar
  23. Tadesse, T., Wiegelmann, T., Inhester, B., Pevtsov, A.: 2011, Astron. Astrophys. 527, A30. ADSCrossRefGoogle Scholar
  24. Tadesse, T., Wiegelmann, T., Inhester, B., Pevtsov, A.: 2012, Solar Phys. 277, 119. ADSCrossRefGoogle Scholar
  25. Thalmann, J.K., Wiegelmann, T., Raouafi, N.E.: 2008, Astron. Astrophys. 488, L71. ADSCrossRefGoogle Scholar
  26. Valori, G., Kliem, B., Keppens, R.: 2005, Astron. Astrophys. 433, 335. ADSzbMATHCrossRefGoogle Scholar
  27. Wheatland, M.S.: 2004, Solar Phys. 222, 247. ADSCrossRefGoogle Scholar
  28. Wheatland, M.S., Leka, K.D.: 2011, Astrophys. J. 728, 112. ADSCrossRefGoogle Scholar
  29. Wheatland, M.S., Régnier, S.: 2009, Astrophys. J. Lett. 700, L88. ADSCrossRefGoogle Scholar
  30. Wheatland, M.S., Sturrock, P.A., Roumeliotis, G.: 2000, Astrophys. J. 540, 1150. ADSCrossRefGoogle Scholar
  31. Wiegelmann, T.: 2004, Solar Phys. 219, 87. ADSCrossRefGoogle Scholar
  32. Wiegelmann, T.: 2007, Solar Phys. 240, 227. ADSCrossRefGoogle Scholar
  33. Wiegelmann, T., Inhester, B.: 2010, Astron. Astrophys. 516, A107. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Tilaye Tadesse
    • 1
    • 2
    Email author
  • T. Wiegelmann
    • 1
  • B. Inhester
    • 1
  • A. Pevtsov
    • 3
  1. 1.Max Planck Institut für SonnensystemforschungKatlenburg-LindauGermany
  2. 2.College of Natural Sciences, Institute of Geophysics, Space Science, and AstronomyAddis Ababa UniversityAddis AbabaEthiopia
  3. 3.National Solar ObservatorySunspotUSA

Personalised recommendations