Solar Physics

, Volume 278, Issue 2, pp 323–345 | Cite as

On the Shape of Force-Free Field Lines in the Solar Corona

  • C. PriorEmail author
  • M. A. Berger


This paper studies the shape parameters of looped field lines in a linear force-free magnetic field. Loop structures with a sufficient amount of kinking are generally seen to form S or inverse S (Z) shapes in the corona (as viewed in projection). For a single field line, we can ask how much the field line is kinked (as measured by the writhe), and how much neighbouring flux twists about the line (as measured by the twist number). The magnetic helicity of a flux element surrounding the field line can be decomposed into these two quantities. We find that the twist helicity contribution dominates the writhe helicity contribution, for field lines of significant aspect ratio, even when their structure is highly kinked. These calculations shed light on some popular assumptions of the field. First, we show that the writhe of field lines of significant aspect ratio (the apex height divided by the footpoint width) can sometimes be of opposite sign to the helicity. Secondly, we demonstrate the possibility of field line structures which could be interpreted as Z-shaped, but which have a helicity value sign expected of an S-shaped structure. These results suggest that caution should be exercised in using two-dimensional images to draw conclusions on the helicity value of field lines and flux tubes.


Corona, structures Helicity, magnetic, observations Magnetic fields, corona 



C.P. wishes to thanks John Brooke for his comments and observations on the manuscript. C.P. was supported by the EPSRC and Award No. KUK-C1-013-04 made by King Abdullah University of Science and Technology (KAUST). M.B. was partially supported by an STFC grant and a Leverhulme grant.


  1. Berger, M.A.: 1984, Geophys. Astrophys. Fluid Dyn. 30, 79. ADSCrossRefGoogle Scholar
  2. Berger, M.A., Field, G.B.: 1984, Phys. Fluids 47, 133. MathSciNetGoogle Scholar
  3. Berger, M.A., Prior, C.B.: 2006, J. Phys. A, Math. Gen. 39, 8321. MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. Călugăreanu, G.: 1959, Rev. Roum. Math. Pures Appl. 4, 5. Google Scholar
  5. Călugăreanu, G.: 1961, Commun. Acad. Repub. Popul. Romine 11, 588. Google Scholar
  6. Fan, Y., Gibson, S.E.: 2004, Astrophys. J. 609, 1123. ADSCrossRefGoogle Scholar
  7. Gary, G.A.: 1989, Astrophys. J. Suppl. 69, 323. ADSCrossRefGoogle Scholar
  8. Green, L.M., Kliem, B., Török, T., van Driel-Gezstelyi, L., Attrillm, G.D.R.: 2007, Solar Phys. 246, 365. ADSCrossRefGoogle Scholar
  9. Handy, B.N., Acton, L.W., Kankelborg, C.C., Wolfson, C.J., Akin, D.J., Bruner, M.E., et al.: 1999, Solar Phys. 187, 229. ADSCrossRefGoogle Scholar
  10. Heyvaerts, J., Priest, E.R.: 1984, Astron. Astrophys. 137, 63. ADSGoogle Scholar
  11. Kaiser, M.: 2005, Adv. Space Res. 36, 1483. ADSCrossRefGoogle Scholar
  12. Kliem, B., Titov, V.S., Török, T.: 2004, Astron. Astrophys. 413, 23. ADSCrossRefGoogle Scholar
  13. Kosugi, T., Matsuzaki, K., Sakao, T., Shimizu, T., Sone, Y., Tachikawa, S., et al.: 2007, Solar Phys. 243, 1. ADSCrossRefGoogle Scholar
  14. Liu, R., Gilbert, H.R., Alexander, D., Su, Y.: 2008, Astrophys. J. 680, 1508. ADSCrossRefGoogle Scholar
  15. Longcope, D.: 2005, Living Rev. Solar Phys. 2(7). Google Scholar
  16. Low, B.C., Berger, M.A.: 2003, Astrophys. J. 580, 644. ADSCrossRefGoogle Scholar
  17. Mackay, D.H., Gaizauskas, V., Yeates, A.R.: 2008, Astrophys. J. 248, 51. Google Scholar
  18. Mackay, D.H., Gaizauskas, V., Rickard, G.J., Priest, E.R.: 1997, Solar Phys. 486, 534. Google Scholar
  19. Magara, T., Longcope, D.: 2001, Astrophys. J. 559, 55. ADSCrossRefGoogle Scholar
  20. Magara, T., Longcope, D.: 2003, Astrophys. J. 586, 630. ADSCrossRefGoogle Scholar
  21. Morse, P.M., Feshbach, H.: 1953, Methods of Theoretical Physics, Part II, McGraw Hill, New York, 1767. Google Scholar
  22. Muglach, K., Wang, Y.M., Kliem, B.: 2009, Astrophys. J. 703, 976. ADSCrossRefGoogle Scholar
  23. Nakagawa, Y., Radius, M.A., Billings, D.E., Catamaran, D.: 1971, Astrophys. J. 19, 72. Google Scholar
  24. Pevstov, A.A.: 2008, Astrophys. J. 29, 49. CrossRefGoogle Scholar
  25. Priest, E.R.: 1981, Solar Magnetohydrodynamics, Kluwer Academic, Dordrecht. Google Scholar
  26. Rust, D.M.: 2003, Adv. Space Res. 32, 1985. CrossRefGoogle Scholar
  27. Rust, D.M., Kumar, A.: 1996, Astrophys. J. 464, 199. ADSCrossRefGoogle Scholar
  28. Tian, L., Liu, Y., Yang, J., Alexander, D.: 2005, Solar Phys. 229, 63. ADSCrossRefGoogle Scholar
  29. Titov, V.S., Demoulin, P.: 1999, Astron. Astrophys. 351, 707. ADSGoogle Scholar
  30. Török, T., Kliem, B.: 2005, Astrophys. J. 630, 97. CrossRefGoogle Scholar
  31. Török, T., Kliem, B., Titov, V.S.: 2004, Astron. Astrophys. 413, 27. CrossRefGoogle Scholar
  32. Török, T., Berger, M.A., Kliem, B.: 2010, Astron. Astrophys. 516, 49. CrossRefGoogle Scholar
  33. Tsuneta, A., Acton, L., Bruner, M., Lemen, J., Brown, W., Caravalho, R., et al.: 1991, Solar Phys. 136, 37. ADSCrossRefGoogle Scholar
  34. Williams, D.R., Török, T., Démoulin, P., van Driel-Gesztelyi, L., Kliem, B.: 2005, Astrophys. J. 628, 163. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Oxford Centre for Collaborative Applied Mathematics (OCCAM)Mathematical InstituteOxfordUK
  2. 2.Mathematics, CEMPSUniversity of ExeterExeterUK

Personalised recommendations