Solar Physics

, Volume 283, Issue 2, pp 307–323 | Cite as

Statistical Analysis of Small Ellerman Bomb Events

  • C. J. Nelson
  • J. G. Doyle
  • R. Erdélyi
  • Z. Huang
  • M. S. Madjarska
  • M. Mathioudakis
  • S. J. Mumford
  • K. Reardon
Article

Abstract

The properties of Ellerman bombs (EBs), small-scale brightenings in the Hα line wings, have proved difficult to establish because their size is close to the spatial resolution of even the most advanced telescopes. Here, we aim to infer the size and lifetime of EBs using high-resolution data of an emerging active region collected using the Interferometric BIdimensional Spectrometer (IBIS) and Rapid Oscillations of the Solar Atmosphere (ROSA) instruments as well as the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). We develop an algorithm to track EBs through their evolution, finding that EBs can often be much smaller (around 0.3″) and shorter-lived (less than one minute) than previous estimates. A correlation between G-band magnetic bright points and EBs is also found. Combining SDO/HMI and G-band data gives a good proxy of the polarity for the vertical magnetic field. It is found that EBs often occur both over regions of opposite polarity flux and strong unipolar fields, possibly hinting at magnetic reconnection as a driver of these events.The energetics of EB events is found to follow a power-law distribution in the range of a nanoflare (1022−25 ergs).

Keywords

Active regions Magnetic fields Photosphere-sunspots Penumbra 

References

  1. Archontis, V., Hood, A.W.: 2009, Formation of Ellerman bombs due to 3D flux emergence. Astron. Astrophys. 508, 1469 – 1483. doi:10.1051/0004-6361/200912455. ADSCrossRefGoogle Scholar
  2. Berger, T.E., Title, A.M.: 2001, On the relation of G-band bright points to the photospheric magnetic field. Astrophys. J. 553, 449 – 469. doi:10.1086/320663. ADSCrossRefGoogle Scholar
  3. Crockett, P.J., Mathioudakis, M., Jess, D.B., Shelyag, S., Keenan, F.P., Christian, D.J.: 2010, The area distribution of solar magnetic bright points. Astrophys. J. Lett. 722, L188 – L193. doi:10.1088/2041-8205/722/2/L188. ADSCrossRefGoogle Scholar
  4. De Wijn, A.G., Stenflo, J.O., Solanki, S.K., Tsuneta, S.: 2009, Small-scale solar magnetic fields. Space Sci. Rev. 144, 275 – 315. doi:10.1007/s11214-008-9473-6. ADSCrossRefGoogle Scholar
  5. Ellerman, F.: 1917, Solar hydrogen “bombs”. Astrophys. J. 46, 298. doi:10.1086/142366. ADSCrossRefGoogle Scholar
  6. Fang, C., Tang, Y.H., Xu, Z., Ding, M.D., Chen, P.F.: 2006, Spectral analysis of Ellerman bombs. Astrophys. J. 643, 1325 – 1336. doi:10.1086/501342. ADSCrossRefGoogle Scholar
  7. Georgoulis, M.K., Rust, D.M., Bernasconi, P.N., Schmieder, B.: 2002, Statistics, morphology, and energetics of Ellerman bombs. Astrophys. J. 575, 506 – 528. doi:10.1086/341195. ADSCrossRefGoogle Scholar
  8. Harvey, J.W.: 1963, Height of an Ellerman “bomb”. Observatory 83, 37 – 38. ADSGoogle Scholar
  9. Herlender, M., Berlicki, A.: 2011, Multi-wavelength analysis of Ellerman bomb light curves. Cent. Eur. Astrophys. Bull. 35, 181 – 186. ADSGoogle Scholar
  10. Isobe, H., Tripathi, D., Archontis, V.: 2007, Ellerman bombs and jets associated with resistive flux emergence. Astrophys. J. Lett. 657, L53 – L56. doi:10.1086/512969. ADSCrossRefGoogle Scholar
  11. Jess, D.B., Mathioudakis, M., Christian, D.J., Crockett, P.J., Keenan, F.P.: 2010a, A study of magnetic bright points in the Na I D1 line. Astrophys. J. Lett. 719, L134 – L139. doi:10.1088/2041-8205/719/2/L134. ADSCrossRefGoogle Scholar
  12. Jess, D.B., Mathioudakis, M., Browning, P.K., Crockett, P.J., Keenan, F.P.: 2010b, Microflare activity driven by forced magnetic reconnection. Astrophys. J. Lett. 712, L111 – L115. doi:10.1088/2041-8205/712/1/L111. ADSCrossRefGoogle Scholar
  13. Keys, P.H., Mathioudakis, M., Jess, D.B., Shelyag, S., Crockett, P.J., Christian, D.J., Keenan, F.P.: 2011, The velocity distribution of solar photospheric magnetic bright points. Astrophys. J. Lett. 740, L40. doi:10.1088/2041-8205/740/2/L40. ADSCrossRefGoogle Scholar
  14. Kurokawa, H., Kawaguchi, I., Funakoshi, Y., Nakai, Y.: 1982, Morphological and evolutional features of Ellerman bombs. Solar Phys. 79, 77 – 84. doi:10.1007/BF00146974. ADSCrossRefGoogle Scholar
  15. Litvinenko, Y.E.: 1999, Photospheric magnetic reconnection and canceling magnetic features on the Sun. Astrophys. J. 515, 435 – 440. doi:10.1086/307001. ADSCrossRefGoogle Scholar
  16. Litvinenko, Y.E., Chae, J., Park, S.-Y.: 2007, Flux pile-up magnetic reconnection in the solar photosphere. Astrophys. J. 662, 1302 – 1308. doi:10.1086/518115. ADSCrossRefGoogle Scholar
  17. Madjarska, M.S., Doyle, J.G., De Pontieu, B.: 2009, Explosive events associated with a surge. Astrophys. J. 701, 253 – 259. doi:10.1088/0004-637X/701/1/253. ADSCrossRefGoogle Scholar
  18. McMath, R.R., Mohler, O.C., Dodson, H.W.: 1960, Solar features associated with Ellerman’s “solar hydrogen bombs”. Proc. Natl. Acad. Sci. USA 46, 165 – 169. doi:10.1073/pnas.46.2.165. ADSCrossRefGoogle Scholar
  19. Nagai, F.: 1980, A model of hot loops associated with solar flares. I – Gasdynamics in the loops. Solar Phys. 68, 351 – 379. doi:10.1007/BF00156874. ADSCrossRefGoogle Scholar
  20. Pariat, E., Aulanier, G., Schmieder, B., Georgoulis, M.K., Rust, D.M., Bernasconi, P.N.: 2004, Resistive emergence of undulatory flux tubes. Astrophys. J. 614, 1099 – 1112. doi:10.1086/423891. ADSCrossRefGoogle Scholar
  21. Pariat, E., Schmieder, B., Berlicki, A., Deng, Y., Mein, N., López Ariste, A., Wang, S.: 2007, Spectrophotometric analysis of Ellerman bombs in the Ca ii, Hα, and UV range. Astron. Astrophys. 473, 279 – 289. doi:10.1051/0004-6361:20067011. ADSCrossRefGoogle Scholar
  22. Parnell, C.E., Jupp, P.E.: 2000, Statistical analysis of the energy distribution of nanoflares in the quiet Sun. Astrophys. J. 529, 554 – 569. doi:10.1086/308271. ADSCrossRefGoogle Scholar
  23. Qiu, J., Ding, M.D., Wang, H., Denker, C., Goode, P.R.: 2000, Ultraviolet and Hα emission in Ellerman bombs. Astrophys. J. Lett. 544, L157 – L161. doi:10.1086/317310. ADSCrossRefGoogle Scholar
  24. Roy, J.-R., Leparskas, H.: 1973, Some statistical properties of Ellerman bombs. Solar Phys. 30, 449 – 457. doi:10.1007/BF00152675. ADSCrossRefGoogle Scholar
  25. Shelyag, S., Schüssler, M., Solanki, S.K., Berdyugina, S.V., Vögler, A.: 2004, G-band spectral synthesis and diagnostics of simulated solar magneto-convection. Astron. Astrophys. 427, 335 – 343. doi:10.1051/0004-6361:20040471. ADSCrossRefGoogle Scholar
  26. Stenflo, J.O.: 1985, Measurements of magnetic fields and the analysis of Stokes profiles. Solar Phys. 100, 189 – 208. doi:10.1007/BF00158428. ADSCrossRefGoogle Scholar
  27. Utz, D., Hanslmeier, A., Muller, R., Veronig, A., Rybák, J., Muthsam, H.: 2010, Dynamics of isolated magnetic bright points derived from Hinode/SOT G-band observations. Astron. Astrophys. 511, A39. doi:10.1051/0004-6361/200913085. ADSCrossRefGoogle Scholar
  28. Vorpahl, J., Pope, T.: 1972, Solar bright points in 3840 Å and Hα. Solar Phys. 25, 347 – 356. doi:10.1007/BF00192334. ADSCrossRefGoogle Scholar
  29. Watanabe, H., Vissers, G., Kitai, R., Rouppe van der Voort, L., Rutten, R.J.: 2011, Ellerman bombs at high resolution. I. Morphological evidence for photospheric reconnection. Astrophys. J. 736, 71. doi:10.1088/0004-637X/736/1/71. ADSCrossRefGoogle Scholar
  30. Wöger, F., von der Lühe, O., Reardon, K.: 2008, Speckle interferometry with adaptive optics corrected solar data. Astron. Astrophys. 488, 375 – 381. doi:10.1051/0004-6361:200809894. ADSCrossRefGoogle Scholar
  31. Zachariadis, T.G., Alissandrakis, C.E., Banos, G.: 1987, Observations of Ellerman bombs in H-alpha. Solar Phys. 108, 227 – 236. doi:10.1007/BF00214163. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • C. J. Nelson
    • 1
    • 2
  • J. G. Doyle
    • 1
  • R. Erdélyi
    • 2
  • Z. Huang
    • 1
  • M. S. Madjarska
    • 1
    • 3
  • M. Mathioudakis
    • 4
  • S. J. Mumford
    • 2
  • K. Reardon
    • 4
    • 5
    • 6
  1. 1.Armagh ObservatoryCollege HillUK
  2. 2.Solar Physics and Space Plasma Research CentreUniversity of SheffieldSheffieldUK
  3. 3.UCL-Mullard Space Science LaboratoryDorkingUK
  4. 4.Astrophysics Research Centre, School of Mathematics and PhysicsQueen’s UniversityBelfastUK
  5. 5.INAF – Osservatorio Astrofisico di ArcetriFirenzeItaly
  6. 6.National Solar Observatory/Sacramento PeakSunspotUSA

Personalised recommendations