Solar Physics

, Volume 284, Issue 1, pp 17–46 | Cite as

The Solar Connection of Enhanced Heavy Ion Charge States in the Interplanetary Medium: Implications for the Flux-Rope Structure of CMEs

  • N. GopalswamyEmail author
  • P. Mäkelä
  • S. Akiyama
  • H. Xie
  • S. Yashiro
  • A. A. Reinard
Flux-Rope Structure of Coronal Mass Ejections


We investigated a set of 54 interplanetary coronal mass ejection (ICME) events whose solar sources are very close to the disk center (within ± 15 from the central meridian). The ICMEs consisted of 23 magnetic-cloud (MC) events and 31 non-MC events. Our analyses suggest that the MC and non-MC ICMEs have more or less the same eruption characteristics at the Sun in terms of soft X-ray flares and CMEs. Both types have significant enhancements in ion charge states, although the non-MC structures have slightly lower levels of enhancement. The overall duration of charge-state enhancement is also considerably smaller than that in MCs as derived from solar wind plasma and magnetic signatures. We find very good correlation between the Fe and O charge-state measurements and the flare properties such as soft X-ray flare intensity and flare temperature for both MCs and non-MCs. These observations suggest that both MC and non-MC ICMEs are likely to have a flux-rope structure and the unfavorable observational geometry may be responsible for the appearance of non-MC structures at 1 AU. We do not find any evidence for an active region expansion resulting in ICMEs lacking a flux-rope structure because the mechanism of producing high charge states and the flux-rope structure at the Sun is the same for MC and non-MC events.


Coronal mass ejections Flares Flux rope Magnetic cloud, charge state 



We thank the ACE, Wind, and SOHO teams for providing the data on line. SOHO is a project of international collaboration between ESA and NASA.


  1. Aguilar-Rodriguez, E., Blanco-Cano, X., Gopalswamy, N.: 2006, Composition and magnetic structure of interplanetary coronal mass ejections at 1 AU. Adv. Space Res. 38, 522. ADSCrossRefGoogle Scholar
  2. Antiochos, S.K., DeVore, C.R., Klimchuk, J.A.: 1999, A model for solar coronal mass ejections. Astrophys. J. 510, 485. ADSCrossRefGoogle Scholar
  3. Bame, S.J., Asbridge, J.R., Feldman, W.C., Fenimore, E.E., Gosling, J.T.: 1979, Solar wind heavy ions from flare-heated coronal plasma. Solar Phys. 62, 179. ADSCrossRefGoogle Scholar
  4. Burlaga, L., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock – Voyager, Helios, and IMP 8 observations. J. Geophys. Res. 86, 6673. ADSCrossRefGoogle Scholar
  5. Burlaga, L., Fitzenreiter, R., Lepping, R., Ogilvie, K., Szabo, A., Lazarus, A., et al.: 1998, A magnetic cloud containing prominence material – January 1997. J. Geophys. Res. 10, 277. ADSCrossRefGoogle Scholar
  6. Cho, K.-S., Park, S.-H., Marubashi, K., Gopalswamy, N., Akiyama, S., Yashiro, S., Kim, R.-S.: 2013, Comparison of helicity signs in interplanetary CMEs and their solar source regions. Solar Phys., in this issue. Google Scholar
  7. Garcia, H.: 1994, Temperature and emission measure from GOES soft X-ray measurements. Solar Phys. 154, 275. ADSCrossRefGoogle Scholar
  8. Gilbert, J.A., Lepri, S.T., Landi, E., Zurbuchen, T.H.: 2012, First measurements of the complete heavy-ion charge state distributions of C, O, and Fe associated with interplanetary coronal mass ejections. Astrophys. J. 751, 20. ADSCrossRefGoogle Scholar
  9. Gopalswamy, N.: 2006a, Properties of interplanetary coronal mass ejections. Space Sci. Rev. 124, 145. ADSCrossRefGoogle Scholar
  10. Gopalswamy, N.: 2006b, Coronal mass ejections and type II radio bursts. In: Gopalswamy, N., Mewaldt, R., Torsti, J. (eds.) Solar Eruptions and Energetic Particles, Geophys. Monogr. Ser. 165, AGU, Washington, 207. CrossRefGoogle Scholar
  11. Gopalswamy, N.: 2006c, Consequences of coronal mass ejections in the heliosphere. Sun Geosph. 1, 5. Google Scholar
  12. Gopalswamy, N.: 2010, Coronal mass ejections: a summary of recent results. In: Proceedings of the 20th National Solar Physics Meeting, held 31 May – 4 June, 2010, Papradno, Slovakia, 108 – 130. Google Scholar
  13. Gopalswamy, N., Akiyama, S., Yashiro, S.: 2009, Major solar flares without coronal mass ejections. In: Gopalswamy, N., Webb, D.F. (eds.) Proceedings of IAU Symposium 257, Universal Heliophysical Processes, 283. Google Scholar
  14. Gopalswamy, N., Yashiro, S., Akiyama, S.: 2007, Geoeffectiveness of halo coronal mass ejections. J. Geophys. Res. 112, A06112. doi: 10.1029/2006JA012149. ADSCrossRefGoogle Scholar
  15. Gopalswamy, N., Raulin, J.-P., Kundu, M.R., Nitta, N., Lemen, J.R., Herrmann, R., Zarro, D., Kosugi, T.: 1995, VLA and YOHKOH observations of an M1.5 flare. Astrophys. J. 455, 715. ADSCrossRefGoogle Scholar
  16. Gopalswamy, N., Hanaoka, Y., Kosugi, T., Lepping, R.P., Steinberg, J.T., Plunkett, S., et al.: 1998, On the relationship between coronal mass ejections and magnetic clouds. Geophys. Res. Lett. 25, 2485. ADSCrossRefGoogle Scholar
  17. Gopalswamy, N., Yashiro, S., Krucker, S., Stenborg, G., Howard, R.A.: 2004, Intensity variation of large solar energetic particle events associated with coronal mass ejections. J. Geophys. Res. 109, A12105. doi: 10.1029/2004JA010602. ADSCrossRefGoogle Scholar
  18. Gopalswamy, N., Aguilar-Rodriguez, E., Yashiro, S., Nunes, S., Kaiser, M.L., Howard, R.A.: 2005, Type II radio bursts and energetic solar eruptions. J. Geophys. Res. 110, A12S07. doi: 10.1029/2005JA011158. ADSCrossRefGoogle Scholar
  19. Gopalswamy, N., Mäkelä, P., Xie, H., Akiyama, S., Yashiro, S.: 2009a, CME interactions with coronal holes and their interplanetary consequences. J. Geophys. Res. 114, A00A22. doi: 10.1029/2008JA013686. ADSCrossRefGoogle Scholar
  20. Gopalswamy, N., Yashiro, S., Michalek, G., Stenborg, G., Vourlidas, A., Freeland, S., Howard, R.: 2009b, The SOHO/LASCO CME catalog. Earth Moon Planets 104, 295. ADSCrossRefGoogle Scholar
  21. Gopalswamy, N., Dal Lago, A., Yashiro, S., Akiyama, S.: 2009c, The expansion and radial speeds of coronal mass ejections. Cent. Eur. Astrophys. Bull. 33, 115. ADSGoogle Scholar
  22. Gopalswamy, N., Xie, H., Mäkelä, P., Akiyama, S., Yashiro, S., Kaiser, M.L., Howard, R.A., Bougeret, J.-L.: 2010a, Interplanetary shocks lacking type II radio bursts. Astrophys. J. 710, 1111. ADSCrossRefGoogle Scholar
  23. Gopalswamy, N., Akiyama, S., Yashiro, S., Mäkelä, P.: 2010b, Coronal mass ejections from sunspot and non-sunspot regions. In: Hasan, S.S., Rutten, R.J. (eds.) Magnetic Coupling Between the Interior and Atmosphere of the Sun, Astrophysics and Space Science Proceedings, Springer, Berlin, 289. CrossRefGoogle Scholar
  24. Gopalswamy, N., Yashiro, S., Michalek, G., Xie, H., Mäkelä, P., Vourlidas, A., Howard, R.A.: 2010c, A catalog of halo coronal mass ejections from SOHO. Sun Geosph. 5, 7. ADSGoogle Scholar
  25. Gopalswamy, N., Nitta, N., Akiyama, S., Mäkelä, P., Yashiro, S.: 2012, Coronal magnetic field measurement from EUV images made by the solar dynamics observatory. Astrophys. J. 744, 72. ADSCrossRefGoogle Scholar
  26. Gosling, J.T.: 1990, Coronal Mass Ejections and Magnetic Flux Ropes in Interplanetary Space in Physics of Magnetic Flux Ropes, Geophys. Monogr. Ser. 58, 343. CrossRefGoogle Scholar
  27. Hanaoka, Y., Kurokawa, H., Enome, S., Nakajima, H., Shibasaki, K., Nishio, M., et al.: 1994, Simultaneous observations of a prominence eruption followed by a coronal arcade formation in radio, soft X-rays, and H(alpha). Publ. Astron. Soc. Japan 46, 205. ADSGoogle Scholar
  28. Henke, T., Woch, J., Mall, U., Livi, S., Wilken, B., Schwenn, R., et al.: 1998, Differences in the O7+/O6+ ratio of magnetic cloud and non-cloud coronal mass ejections. Geophys. Res. Lett. 25, 3465. ADSCrossRefGoogle Scholar
  29. Henke, T., Woch, J., Schwenn, R., Mall, U., Gloeckler, G., von Steiger, R., et al.: 2001, Ionization state and magnetic topology of coronal mass ejections. J. Geophys. Res. 106, 10613. CrossRefGoogle Scholar
  30. Hundhausen, A.J., Gilbert, H.E., Bame, S.J.: 1968, Ionization state of the interplanetary plasma. J. Geophys. Res. 73, 5485. ADSCrossRefGoogle Scholar
  31. Kim, R.-S., Gopalswamy, N., Cho, K.-S., Moon, Y.-J., Yashiro, S.: 2013, Propagation characteristics of CMEs associated magnetic clouds and ejecta. Solar Phys., in this issue. Google Scholar
  32. Lepri, S.T., Zurbuchen, T.H.: 2004, Iron charge state distributions as an indicator of hot ICMEs: possible sources and temporal and spatial variations during solar maximum. J. Geophys. Res. 109, A01112. doi: 10.1029/2003JA009954. ADSCrossRefGoogle Scholar
  33. Lepri, S.T., Zurbuchen, T.H.: 2010, Direct observational evidence of filament material within interplanetary coronal mass ejections. Astrophys. J. Lett. 723, L22. ADSCrossRefGoogle Scholar
  34. Lepri, S.T., Zurbuchen, T.H., Fisk, L.A., Richardson, I.G., Cane, H.V., Gloeckler, G.: 2001, Iron charge state distributions as an identifier of interplanetary coronal mass ejections. J. Geophys. Res. 106, 29231. ADSCrossRefGoogle Scholar
  35. Lin, J., Raymond, J.C., van Ballegooijen, A.A.: 2004, The role of magnetic reconnection in the observable features of solar eruptions. Astrophys. J. 602, 422. ADSCrossRefGoogle Scholar
  36. Lynch, B.J., Reinard, A.A., Mulligan, T., Reeves, K.K., Rakowski, C.E., Allred, J.C., et al.: 2011, Ionic composition structure of coronal mass ejections in axisymmetric magnetohydrodynamic models. Astrophys. J. 740, 112. ADSCrossRefGoogle Scholar
  37. Marubashi, K.: 1997, Interplanetary magnetic flux ropes and solar filaments. In: Crooker, N., Joselyn, J.A., Feynman, J. (eds.) Coronal Mass Ejections, Geophys. Monogr. Ser. 99, AGU, Washington, 147. CrossRefGoogle Scholar
  38. Owens, M.J., Cargill, P.J., Pagel, C., Siscoe, G.L., Crooker, N.U.: 2005, Characteristic magnetic field and speed properties of interplanetary coronal mass ejections and their sheath regions. J. Geophys. Res. 110, A01105. doi: 10.1029/2004JA010814. ADSCrossRefGoogle Scholar
  39. Qiu, J., Hu, Q., Howard, T.A., Yurchyshyn, V.B.: 2007, On the magnetic flux budget in low-corona magnetic reconnection and interplanetary coronal mass ejections. Astrophys. J. 659, 758. ADSCrossRefGoogle Scholar
  40. Rakowski, C.E., Laming, M.J., Lepri, S.T.: 2007, Ion charge states in halo coronal mass ejections: what can we learn about the explosion? Astrophys. J. 667, 602. ADSCrossRefGoogle Scholar
  41. Reinard, A.: 2005, Comparison of interplanetary CME charge state composition with CME-associated flare magnitude. Astrophys. J. 620, 501. ADSCrossRefGoogle Scholar
  42. Reinard, A.A.: 2008, Analysis of interplanetary coronal mass ejection parameters as a function of energetics, source location, and magnetic structure. Astrophys. J. 682, 1289. ADSCrossRefGoogle Scholar
  43. Reinard, A.A., Zurbuchen, T.H., Fisk, L.A., Lepri, S.T., Skoug, R.M., Gloeckler, G.: 2001, Comparison between average charge states and abundances of ions in CMEs and the slow solar wind. AIP Conf. Proc. 598(1), 139. ADSCrossRefGoogle Scholar
  44. Riley, P., Schatzman, C., Cane, H.V., Richardson, I.G., Gopalswamy, N.: 2006, On the rates of coronal mass ejections: remote solar and in situ observations. Astrophys. J. 647, 648. ADSCrossRefGoogle Scholar
  45. Schmahl, E.J., Schmelz, J.T., Saba, J.L.R., Strong, K.T., Kundu, M.R.: 1990, Microwave and X-ray observations of a major confined solar flare. Astrophys. J. 358, 654. ADSCrossRefGoogle Scholar
  46. Uchida, Y., McAllister, A., Strong, K.T., Ogawara, Y., Shimizu, T., Matsumoto, R., Hudson, H.S.: 1992, Continual expansion of the active region corona observed by the Yohkoh soft X-ray telescope. Publ. Astron. Soc. Japan 44, L155. ADSGoogle Scholar
  47. Xie, H., Gopalswamy, N., St. Cyr, O.C.: 2013, Near-Sun flux rope structure of CMEs. Solar Phys. in this issue. doi: 10.1007/s11207-012-0209-0. Google Scholar
  48. Yashiro, S., Gopalswamy, N.: 2009, Statistical relationship between solar flares and coronal mass ejections. In: Gopalswamy, N., Webb, D.F. (eds.) IAU Symposium 257, Universal Heliophysical Processes, Cambridge Univ. Press, London, 233. Google Scholar
  49. Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.C., Plunkett, S.P., Rich, N.B., Howard, R.A.: 2004, A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res. 109, A07105. doi: 10.1029/2003JA010282. ADSCrossRefGoogle Scholar
  50. Zhao, L., Zurbuchen, T.H., Fisk, L.A.: 2009, Global distribution of the solar wind during solar cycle 23: ACE observations. Geophys. Res. Lett. 36, L14104. doi: 10.1029/2009GL039181. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media (outside the USA) 2013

Authors and Affiliations

  • N. Gopalswamy
    • 1
    Email author
  • P. Mäkelä
    • 2
  • S. Akiyama
    • 2
  • H. Xie
    • 2
  • S. Yashiro
    • 2
  • A. A. Reinard
    • 3
  1. 1.NASA Goddard Space Flight CenterGreenbeltUSA
  2. 2.The Catholic University of AmericaWashingtonUSA
  3. 3.NOAA Space Weather Prediction CenterBoulderUSA

Personalised recommendations