Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Coronal Hole Influence on the Observed Structure of Interplanetary CMEs


We report on the coronal hole (CH) influence on the 54 magnetic cloud (MC) and non-MC associated coronal mass ejections (CMEs) selected for studies during the Coordinated Data Analysis Workshops (CDAWs) focusing on the question if all CMEs are flux ropes. All selected CMEs originated from source regions located between longitudes 15E – 15W. Xie, Gopalswamy, and St. Cyr (2013, Solar Phys., doi: 10.1007/s11207-012-0209-0 ) found that these MC and non-MC associated CMEs are on average deflected towards and away from the Sun–Earth line, respectively. We used a CH influence parameter (CHIP) that depends on the CH area, average magnetic field strength, and distance from the CME source region to describe the influence of all on-disk CHs on the erupting CME. We found that for CHIP values larger than 2.6 G the MC and non-MC events separate into two distinct groups where MCs (non-MCs) are deflected towards (away) from the disk center. Division into two groups was also observed when the distance to the nearest CH was less than 3.2×105 km. At CHIP values less than 2.6 G or at distances of the nearest CH larger than 3.2×105 km the deflection distributions of the MC and non-MCs started to overlap, indicating diminishing CH influence. These results give support to the idea that all CMEs are flux ropes, but those observed to be non-MCs at 1 AU could be deflected away from the Sun–Earth line by nearby CHs, making their flux rope structure unobservable at 1 AU.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4


  1. Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357 – 402. doi: 10.1007/BF00733434 .

  2. Burlaga, L., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock – Voyager, Helios, and IMP 8 observations. J. Geophys. Res. 86, 6673 – 6684. doi: 10.1029/JA086iA08p06673 .

  3. Cremades, H., Bothmer, V., Tripathi, D.: 2006, Properties of structured coronal mass ejections in solar cycle 23. Adv. Space Res. 38, 461 – 465. doi: 10.1016/j.asr.2005.01.095 .

  4. Delaboudinière, J.P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., van Dessel, E.L.: 1995, EIT: Extreme-Ultraviolet Imaging Telescope for the SOHO mission. Solar Phys. 162, 291 – 312. doi: 10.1007/BF00733432 .

  5. Filippov, B.P., Gopalswamy, N., Lozhechkin, A.V.: 2001, Non-radial motion of eruptive filaments. Solar Phys. 203, 119 – 130.

  6. Gopalswamy, N.: 2006, Properties of interplanetary coronal mass ejections. Space Sci. Rev. 124, 145 – 168. doi: 10.1007/s11214-006-9102-1 .

  7. Gopalswamy, N., Thompson, B.J.: 2000, Early life of coronal mass ejections. J. Atmos. Solar-Terr. Phys. 62, 1457 – 1469. doi: 10.1016/S1364-6826(00)00079-1 .

  8. Gopalswamy, N., Shibasaki, K., Thompson, B.J., Gurman, J., DeForest, C.: 1999, Microwave enhancement and variability in the elephant’s trunk coronal hole: comparison with SOHO observations. J. Geophys. Res. 104, 9767 – 9780. doi: 10.1029/1998JA900168 .

  9. Gopalswamy, N., Yashiro, S., Kaiser, M.L., Howard, R.A., Bougeret, J.L.: 2001, Radio signatures of coronal mass ejection interaction: coronal mass ejection cannibalism? Astrophys. J. Lett. 548, L91 – L94. doi: 10.1086/318939 .

  10. Gopalswamy, N., Yashiro, S., Krucker, S., Stenborg, G., Howard, R.A.: 2004, Intensity variation of large solar energetic particle events associated with coronal mass ejections. J. Geophys. Res. 109, A12105. doi: 10.1029/2004JA010602 .

  11. Gopalswamy, N., Yashiro, S., Michalek, G., Xie, H., Lepping, R.P., Howard, R.A.: 2005, Solar source of the largest geomagnetic storm of cycle 23. Geophys. Res. Lett. 32, 12. doi: 10.1029/2004GL021639 .

  12. Gopalswamy, N., Mäkelä, P., Xie, H., Akiyama, S., Yashiro, S.: 2009, CME interactions with coronal holes and their interplanetary consequences. J. Geophys. Res. 114, A00A22. doi: 10.1029/2008JA013686 .

  13. Gopalswamy, N., Mäkelä, P., Xie, H., Akiyama, S., Yashiro, S.: 2010a, Solar sources of “Driverless” interplanetary shocks. In: Twelfth International Solar Wind Conference 1216, 452 – 458. doi: 10.1063/1.3395902 .

  14. Gopalswamy, N., Xie, H., Mäkelä, P., Akiyama, S., Yashiro, S., Kaiser, M.L., Howard, R.A., Bougeret, J.L.: 2010b, Interplanetary shocks lacking type II radio bursts. Astrophys. J. 710, 1111 – 1126. doi: 10.1088/0004-637X/710/2/1111 .

  15. Hildner, E.: 1977, Mass ejections from the solar corona into interplanetary space. In: Shea, M., Smart, D., Wu, S. (eds.) Study of Travelling Interplanetary Phenomena, Astrophys. Space Sci. Libr. 71, D. Reidel Publ. Co., Dordrecht, 3 – 20.

  16. Jian, L., Russell, C.T., Luhmann, J.G., Skoug, R.M.: 2006, Properties of interplanetary coronal mass ejections at one AU during 1995 – 2004. Solar Phys. 239, 393 – 436. doi: 10.1007/s11207-006-0133-2 .

  17. Kilpua, E.K.J., Pomoell, J., Vourlidas, A., Vainio, R., Luhmann, J., Li, Y., Schroeder, P., Galvin, A.B., Simunac, K.: 2009, STEREO observations of interplanetary coronal mass ejections and prominence deflection during solar minimum period. Ann. Geophys. 27, 4491 – 4503. doi: 10.5194/angeo-27-4491-2009 .

  18. Kilpua, E.K.J., Jian, L.K., Li, Y., Luhmann, J.G., Russell, C.T.: 2011, Multipoint ICME encounters: pre-STEREO and STEREO observations. J. Atmos. Solar-Terr. Phys. 73, 1228 – 1241. doi: 10.1016/j.jastp.2010.10.012 .

  19. Klein, L.W., Burlaga, L.F.: 1982, Interplanetary magnetic clouds at 1 AU. J. Geophys. Res. 87, 613 – 624. doi: 10.1029/JA087iA02p00613 .

  20. Krall, J., St. Cyr, O.C.: 2006, Flux-rope coronal mass ejection geometry and its relation to observed morphology. Astrophys. J. 652, 1740 – 1746. doi: 10.1086/508337 .

  21. MacQueen, R.M., Hundhausen, A.J., Conover, C.W.: 1986, The propagation of coronal mass ejection transients. J. Geophys. Res. 91, 31 – 38. doi: 10.1029/JA091iA01p00031 .

  22. Mohamed, A.A.: 2011, Some aspects of solar activity and their impact on space environment near Earth. Ph.D. thesis, School of Physics, University of Sydney, Australia.

  23. Mohamed, A.A., Gopalswamy, N., Yashiro, S., Akiyama, S., Mäkelä, P., Xie, H., Jung, H.: 2012, The relation between coronal holes and coronal mass ejections during the rise, maximum, and declining phases of solar cycle 23. J. Geophys. Res. 117, A1103. doi: 10.1029/2011JA016589 .

  24. Plunkett, S.P., Thompson, B.J., St. Cyr, O.C., Howard, R.A.: 2001, Solar source regions of coronal mass ejections and their geomagnetic effects. J. Atmos. Solar-Terr. Phys. 63, 389 – 402. doi: 10.1016/S1364-6826(00)00166-8 .

  25. Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996 – 2009): catalog and summary of properties. Solar Phys. 264, 189 – 237. doi: 10.1007/s11207-010-9568-6 .

  26. Riley, P., Schatzman, C., Cane, H.V., Richardson, I.G., Gopalswamy, N.: 2006, On the rates of coronal mass ejections: remote solar and in situ observations. Astrophys. J. 647, 648 – 653. doi: 10.1086/505383 .

  27. Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., Wolfson, C.J., Zayer, I., MDI Engineering Team: 1995, The solar oscillations investigation – Michelson Doppler Imager. Solar Phys. 162, 129 – 188. doi: 10.1007/BF00733429 .

  28. Wang, Y., Shen, C., Wang, S., Ye, P.: 2004, Deflection of coronal mass ejection in the interplanetary medium. Solar Phys. 222, 329 – 343. doi: 10.1023/B:SOLA.0000043576.21942.aa .

  29. Xie, H., Gopalswamy, N., St. Cyr, O.C.: 2013, Near-Sun flux rope structure of CMEs. Solar Phys., this issue. doi: 10.1007/s11207-012-0209-0 .

  30. Zirker, J.B. (ed.): 1977, Coronal Holes and High-Speed Wind Streams, Colorado Assoc. Univ. Press, Boulder.

  31. Zurbuchen, T.H., Richardson, I.G.: 2006, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev. 123, 31 – 43. doi: 10.1007/s11214-006-9010-4 .

Download references


We would like to thank the local organizers of the LWS CDAW meetings in San Diego, USA, and Alcalá de Henares, Spain. This research was supported by NASA grants NNX10AL50A and NNG11PL10A. SOHO is an international cooperation project between ESA and NASA.

Author information

Correspondence to P. Mäkelä.

Additional information

Flux-Rope Structure of Coronal Mass Ejections

Guest Editors: N. Gopalswamy, T. Nieves-Chinchilla, M. Hidalgo, J. Zhang, and P. Riley

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mäkelä, P., Gopalswamy, N., Xie, H. et al. Coronal Hole Influence on the Observed Structure of Interplanetary CMEs. Sol Phys 284, 59–75 (2013). https://doi.org/10.1007/s11207-012-0211-6

Download citation


  • Sun
  • Coronal holes
  • Coronal mass ejections
  • Magnetic clouds
  • Ejecta