Solar Physics

, Volume 282, Issue 2, pp 453–469 | Cite as

Quiet Sun Explosive Events: Jets, Splashes, and Eruptions

  • D. E. InnesEmail author
  • L. Teriaca


Explosive events appear as broad non-Gaussian wings in the line profiles of small transition-region phenomena. Images from the Solar Dynamics Observatory (SDO) give a first view of the plasma dynamics at the sites of explosive events seen simultaneously in O vi spectra of a region of quiet Sun, taken with the ultraviolet spectrometer Solar Ultraviolet Measurements of Emitted Radiation (SUMER) onboard the Solar and Heliospheric Observatory (SOHO). Distinct event bursts were seen either at the junction of supergranular network cells or near emerging flux. Three are described in the context of their surrounding transition region (304 Å) and coronal (171 Å) activity. One showed plasma ejections from an isolated pair of sites, with a time lag of 50 seconds between events. At the site where the later explosive event was seen, the extreme ultraviolet (EUV) images show a hot core surrounded by a small, expanding ring of chromospheric emission, which we interpret as a “splash.” The second explosive-event burst was related to flux cancellation, inferred from Helioseismic and Magnetic Imager (HMI) magnetograms, and a coronal dimming surrounded by a ring of bright EUV emission with explosive events at positions where the spectrometer slit crossed the bright ring. The third series of events occurred at the base of a slow, small coronal mass ejection (mini-CME). All events studied here imply jet-like flows probably triggered by magnetic reconnection at supergranular junctions. Events come from sites close to the footpoints of jets seen in Atmospheric Imaging Assembly (AIA) images, and possibly from the landing site of high-velocity flows. They are not caused by rapid rotation in spicules.


Transition region Magnetic reconnection, observational signatures 



The authors thank the referee for critical and helpful comments. We would also like to thank R. Attie and A. Genetelli for discussion on the ball-tracking method. SDO is the first mission to be launched for NASA’s Living With a Star (LWS) Program. Data are provided courtesy of NASA/SDO, the AIA and HMI science teams, and the German Data Center at MPS. The SUMER project is financially supported by DARA, CNES, NASA, and the ESA PRODEX program (Swiss contribution). SOHO is a project of international cooperation between ESA and NASA.

Supplementary material

11207_2012_199_MOESM1_ESM.avi (9.9 mb)
11207_2012_199_MOESM2_ESM.avi (2 mb)

EVENT3_171 (AVI 896 kB)

EVENT3_304 (AVI 890 kB)


  1. Aiouaz, T.: 2008, Evidence of relentless reconnections at boundaries of supergranular network lanes in quiet Sun and coronal hole. Astrophys. J. 674, 1144 – 1152. doi: 10.1086/524029. ADSCrossRefGoogle Scholar
  2. Attie, R., Innes, D.E., Potts, H.E.: 2009, Evidence of photospheric vortex flows at supergranular junctions observed by FG/SOT (Hinode). Astron. Astrophys. 493, L13 – L16. doi: 10.1051/0004-6361:200811258. ADSCrossRefGoogle Scholar
  3. Brković, A., Peter, H.: 2004, Statistical comparison of transition region blinkers and explosive events. Astron. Astrophys. 422, 709 – 716. doi: 10.1051/0004-6361:20040479. ADSCrossRefGoogle Scholar
  4. Brueckner, G.E., Bartoe, J.-D.F.: 1983, Observations of high-energy jets in the corona above the quiet Sun, the heating of the corona, and the acceleration of the solar wind. Astrophys. J. 272, 329 – 348. ADSCrossRefGoogle Scholar
  5. Chae, J., Wang, H., Lee, C., Goode, P.R., Schühle, U.: 1998, Photospheric magnetic field changes associated with transition region explosive events. Astrophys. J. Lett. 497, L109. ADSCrossRefGoogle Scholar
  6. Curdt, W., Tian, H.: 2011, Spectroscopic evidence for helicity in explosive events. Astron. Astrophys. 532, L9. doi: 10.1051/0004-6361/201117116. ADSCrossRefGoogle Scholar
  7. De Pontieu, B., McIntosh, S.W., Carlsson, M., Hansteen, V.H., Tarbell, T.D., Boerner, P., Martinez-Sykora, J., Schrijver, C.J., Title, A.M.: 2011, The origins of hot plasma in the solar corona. Science 331, 55. doi: 10.1126/science.1197738. ADSCrossRefGoogle Scholar
  8. De Pontieu, B., Carlsson, M., Rouppe van der Voort, L.H.M., Rutten, R.J., Hansteen, V.H., Watanabe, H.: 2012, Ubiquitous torsional motions in type II spicules. Astrophys. J. Lett. 752, L12. doi: 10.1088/2041-8205/752/1/L12. ADSCrossRefGoogle Scholar
  9. Dere, K.P.: 1994, Explosive events, magnetic reconnection, and coronal heating. Adv. Space Res. 14, 13. ADSCrossRefGoogle Scholar
  10. Dere, K.P., Bartoe, J.-D.F., Brueckner, G.E.: 1989, Explosive events in the solar transition zone. Solar Phys. 123, 41 – 68. ADS:1989SoPh..123...41D, doi: 10.1007/BF00150011. ADSCrossRefGoogle Scholar
  11. Dere, K.P., Bartoe, J.-D.F., Brueckner, G.E., Ewing, J., Lund, P.: 1991, Explosive events and magnetic reconnection in the solar atmosphere. J. Geophys. Res. 96, 9399 – 9407. ADSCrossRefGoogle Scholar
  12. Doyle, J.G., Roussev, I.I., Madjarska, M.S.: 2004, New insight into the blinker phenomenon and the dynamics of the solar transition region. Astron. Astrophys. 418, L9 – L12. doi: 10.1051/0004-6361:20040104. ADSCrossRefGoogle Scholar
  13. Harrison, R.A.: 1997, EUV blinkers: the significance of variations in the extreme ultraviolet quiet Sun. Solar Phys. 175, 467 – 485. ADS:1997SoPh..175..467H, doi: 10.1023/A:1004964707047. ADSCrossRefGoogle Scholar
  14. Harrison, R.A., Lang, J., Brooks, D.H., Innes, D.E.: 1999, A study of extreme ultraviolet blinker activity. Astron. Astrophys. 351, 1115 – 1132. ADSGoogle Scholar
  15. Harrison, R.A., Harra, L.K., Brković, A., Parnell, C.E.: 2003, A study of the unification of quiet-Sun transient-event phenomena. Astron. Astrophys. 409, 755 – 764. ADSCrossRefGoogle Scholar
  16. Innes, D.E.: 2001, Coordinated observations of the quiet Sun transition region using SUMER spectra, TRACE images and MDI magnetograms. Astron. Astrophys. 378, 1067 – 1077. ADSCrossRefGoogle Scholar
  17. Innes, D.E., Tóth, G.: 1999, Simulations of small-scale explosive events on the Sun. Solar Phys. 185, 127 – 141. ADS:1999SoPh..185..127I, doi: 10.1023/A:1005162216540. ADSCrossRefGoogle Scholar
  18. Innes, D.E., Inhester, B., Axford, W.I., Wilhelm, K.: 1997a, Bi-directional plasma jets produced by magnetic reconnection on the Sun. Nature 386, 811 – 813. doi: 10.1038/386811a0. ADSCrossRefGoogle Scholar
  19. Innes, D.E., Brekke, P., Germerott, D., Wilhelm, K.: 1997b, Bursts of explosive events in the solar network. Solar Phys. 175, 341 – 348. ADS:1997SoPh..175..341I, doi: 10.1023/A:1004997501594. ADSCrossRefGoogle Scholar
  20. Innes, D.E., Genetelli, A., Attie, R., Potts, H.E.: 2009, Quiet Sun mini-coronal mass ejections activated by supergranular flows. Astron. Astrophys. 495, 319. doi: 10.1051/0004-6361:200811011. ADSCrossRefGoogle Scholar
  21. Kamio, S., Curdt, W., Teriaca, L., Inhester, B., Solanki, S.K.: 2010, Observations of a rotating macrospicule associated with an X-ray jet. Astron. Astrophys. 510, L1. doi: 10.1051/0004-6361/200913269. ADSCrossRefGoogle Scholar
  22. Krucker, S., Benz, A.O.: 2000, Are heating events in the quiet solar corona small flares? Multiwavelength observations of individual events. Solar Phys. 191, 341 – 358. ADS:2000SoPh..191..341K, doi: 10.1023/A:1005255608792. ADSCrossRefGoogle Scholar
  23. Lemaire, P., Wilhelm, K., Curdt, W., Schüle, U., Marsch, E., Poland, A.I., Jordan, S.D., Thomas, R.J., Hassler, D.M., Vial, J.-C., Kuhne, M., Huber, M.C.E., Siegmund, O.H.W., Gabriel, A., Timothy, J.G., Grewing, M.: 1997, First results of the SUMER telescope and spectrometer on SOHO – II. Imagery and data management. Solar Phys. 170, 105 – 122. ADS:1997SoPh..170..105L, doi: 10.1023/A:1004994702333. ADSCrossRefGoogle Scholar
  24. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17 – 40. ADS:2012SoPh..275...17L, doi: 10.1007/s11207-011-9776-8. ADSCrossRefGoogle Scholar
  25. Liu, Y., Hoeksema, J.T., Scherrer, P.H., Schou, J., Couvidat, S., Bush, R.I., Duvall, T.L., Hayashi, K., Sun, X., Zhao, X.: 2012, Comparison of line-of-sight magnetograms taken by the Solar Dynamics Observatory/Helioseismic and Magnetic Imager and Solar and Heliospheric Observatory/Michelson Doppler Imager. Solar Phys. 279, 295 – 316. ADS:2012SoPh..279..295L, doi: 10.1007/s11207-012-9976-x. ADSCrossRefGoogle Scholar
  26. Madjarska, M.S., Doyle, J.G.: 2003, Simultaneous observations of solar transition region blinkers and explosive events by SUMER, CDS and BBSO. Are blinkers, explosive events and spicules the same phenomenon? Astron. Astrophys. 403, 731 – 741. ADSCrossRefGoogle Scholar
  27. Madjarska, M.S., Doyle, J.G., de Pontieu, B.: 2009, Explosive events associated with a surge. Astrophys. J. 701, 253 – 259. doi: 10.1088/0004-637X/701/1/253. ADSCrossRefGoogle Scholar
  28. Mendoza-Torres, J.E., Torres-Papaqui, J.P., Wilhelm, K.: 2005, Explosive events in the solar atmosphere seen in extreme-ultraviolet emission lines. Astron. Astrophys. 431, 339 – 344. doi: 10.1051/0004-6361:20041299. ADSCrossRefGoogle Scholar
  29. Muglach, K.: 2008, Explosive events and the evolution of the photospheric magnetic field. Astrophys. J. 687, 1398 – 1405. doi: 10.1086/592065. ADSCrossRefGoogle Scholar
  30. Ning, Z., Innes, D.E., Solanki, S.K.: 2004, Line profile characteristics of solar explosive event bursts. Astron. Astrophys. 419, 1141. doi: 10.1051/0004-6361:20034499. ADSCrossRefGoogle Scholar
  31. Pike, C.D., Mason, H.E.: 1998, Rotating transition region features observed with the SOHO coronal diagnostic spectrometer. Solar Phys. 182, 333 – 348. ADS:1998SoPh..182..333P, doi: 10.1023/A:1005065704108. ADSCrossRefGoogle Scholar
  32. Podladchikova, O., Vourlidas, A., Van der Linden, R.A.M., Wülser, J., Patsourakos, S.: 2010, Extreme ultraviolet observations and analysis of micro-eruptions and their associated coronal waves. Astrophys. J. 709, 369 – 376. doi: 10.1088/0004-637X/709/1/369. ADSCrossRefGoogle Scholar
  33. Porter, J.G., Dere, K.P.: 1991, The magnetic network location of explosive events observed in the solar transition region. Astrophys. J. 370, 775 – 778. ADSCrossRefGoogle Scholar
  34. Potts, H.E., Barrett, R.K., Diver, D.A.: 2004, Balltracking: an highly efficient method for tracking flow fields. Astron. Astrophys. 424, 253 – 262. doi: 10.1051/0004-6361:20035891. ADSCrossRefGoogle Scholar
  35. Potts, H.E., Khan, J.I., Diver, D.A.: 2007, Small-scale energy release driven by supergranular flows on the quiet Sun. Solar Phys. 245, 55 – 68. ADS:2007SoPh..245...55P, doi: 10.1007/s11207-007-9021-7. ADSCrossRefGoogle Scholar
  36. Priest, E.R., Hood, A.W., Bewsher, D.: 2002, The nature of blinkers and the solar transition region. Solar Phys. 205, 249 – 264. ADS:2002SoPh..205..249P, doi: 10.1023/A:1014249729772. ADSCrossRefGoogle Scholar
  37. Roussev, I., Doyle, J.G., Galsgaard, K., Erdélyi, R.: 2001, Modelling of solar explosive events in 2D environments. III. Observable consequences. Astron. Astrophys. 380, 719 – 726. ADSCrossRefGoogle Scholar
  38. Ryutova, M.P., Tarbell, T.D.: 2000, On the transition region explosive events. Astrophys. J. Lett. 541, L29 – L32. ADSCrossRefGoogle Scholar
  39. Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207 – 227. ADS:2012SoPh..275..207S, doi: 10.1007/s11207-011-9834-2. ADSCrossRefGoogle Scholar
  40. Scullion, E., Popescu, M.D., Banerjee, D., Doyle, J.G., Erdélyi, R.: 2009, Jets in polar coronal holes. Astrophys. J. 704, 1385 – 1395. doi: 10.1088/0004-637X/704/2/1385. ADSCrossRefGoogle Scholar
  41. Shimojo, M., Narukage, N., Kano, R., Sakao, T., Tsuneta, S., Shibasaki, K., Cirtain, J.W., Lundquist, L.L., Reeves, K.K., Savcheva, A.: 2007, Fine structures of solar X-ray jets observed with the X-Ray Telescope aboard Hinode. Publ. Astron. Soc. Japan 59, 745. Google Scholar
  42. Sterling, A.C., Shibata, K., Mariska, J.T.: 1993, Solar chromospheric and transition region response to energy deposition in the middle and upper chromosphere. Astrophys. J. 407, 778 – 789. ADSCrossRefGoogle Scholar
  43. Sterling, A.C., Mariska, J.T., Shibata, K., Suematsu, Y.: 1991, Numerical simulations of microflare evolution in the solar transition region and corona. Astrophys. J. 381, 313 – 322. doi: 10.1086/170653. ADSCrossRefGoogle Scholar
  44. Strong, K.T., Harvey, K., Hirayama, T., Nitta, N., Shimizu, T., Tsuneta, S.: 1992, Observations of the variability of coronal bright points by the Soft X-ray Telescope on Yohkoh. Publ. Astron. Soc. Japan 44, L161 – L166. ADSGoogle Scholar
  45. Subramanian, S., Madjarska, M.S., Maclean, R.C., Doyle, J.G., Bewsher, D.: 2008, Magnetic topology of blinkers. Astron. Astrophys. 488, 323 – 329. doi: 10.1051/0004-6361:20079315. ADSzbMATHCrossRefGoogle Scholar
  46. Suematsu, Y., Ichimoto, K., Katsukawa, Y., Shimizu, T., Okamoto, T., Tsuneta, S., Tarbell, T., Shine, R.A.: 2008, High resolution observations of spicules with Hinode/SOT. In: Matthews, S.A., Davis, J.M., Harra, L.K. (eds.) First Results from Hinode CS-397, Astron. Soc. Pac., San Francisco, 27. Google Scholar
  47. Tarbell, T., Ryutova, M., Covington, J., Fludra, A.: 1999, Heating and jet formation by hydrodynamic cumulation in the solar atmosphere. Astrophys. J. Lett. 514, L47 – L51. ADSCrossRefGoogle Scholar
  48. Teriaca, L., Banerjee, D., Falchi, A., Doyle, J.G., Madjarska, M.S.: 2004, Transition region small-scale dynamics as seen by SUMER on SOHO. Astron. Astrophys. 427, 1065. doi: 10.1051/0004-6361:20040503. ADSCrossRefGoogle Scholar
  49. Wilhelm, K.: 2000, Solar spicules and macrospicules observed by SUMER. Astron. Astrophys. 360, 351 – 362. ADSGoogle Scholar
  50. Wilhelm, K., Curdt, W., Marsch, E., Schühle, U., Lemaire, P., Gabriel, A., Vial, J.-C., Grewing, M., Huber, M.C.E., Jordan, S.D., Poland, A.I., Thomas, R.J., Kuhne, M., Timothy, J.G., Hassler, D.M., Siegmund, O.H.W.: 1995, SUMER – solar ultraviolet measurements of emitted radiation. Solar Phys. 162, 189. ADS:1995SoPh..162..189W, doi: 10.1007/BF00733430. ADSCrossRefGoogle Scholar
  51. Wilhelm, K., Lemaire, P., Curdt, W., Schuhle, U., Marsch, E., Poland, A.I., Jordan, S.D., Thomas, R.J., Hassler, D.M., Huber, M.C.E., Vial, J.-C., Kuhne, M., Siegmund, O.H.W., Gabriel, A., Timothy, J.G., Grewing, M., Feldman, U., Hollandt, J., Brekke, P.: 1997, First results of the SUMER telescope and spectrometer on SOHO – I. Spectra and spectroradiometry. Solar Phys. 170, 75 – 104. ADS:1997SoPh..170...75W, doi: 10.1023/A:1004923511980. ADSCrossRefGoogle Scholar
  52. Wilhelm, K., Marsch, E., Dwivedi, B.N., Feldman, U.: 2007, Observations of the Sun at vacuum-ultraviolet wavelengths from space. Part II: Results and interpretations. Space Sci. Rev. 133, 103 – 179. doi: 10.1007/s11214-007-9285-0. ADSCrossRefGoogle Scholar
  53. Winebarger, A.R., Emslie, A.G., Mariska, J.T., Warren, H.P.: 2002, Energetics of explosive events observed with SUMER. Astrophys. J. 565, 1298 – 1311. ADSCrossRefGoogle Scholar
  54. Xia, L.D., Popescu, M.D., Doyle, J.G., Giannikakis, J.: 2005, Time series study of EUV spicules observed by SUMER/SOHO. Astron. Astrophys. 438, 1115 – 1122. doi: 10.1051/0004-6361:20042579. ADSCrossRefGoogle Scholar
  55. Zheng, R., Jiang, Y., Hong, J., Yang, J., Bi, Y., Yang, L., Yang, D.: 2011, A possible detection of a fast-mode extreme ultraviolet wave associated with a mini coronal mass ejection observed by the Solar Dynamics Observatory. Astrophys. J. Lett. 739, L39. doi: 10.1088/2041-8205/739/2/L39. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Max-Planck Institut für SonnensystemforschungKatlenburg-LindauGermany

Personalised recommendations