Solar Physics

, Volume 289, Issue 2, pp 545–561 | Cite as

Survey and Merging of Sunspot Catalogs

Solar Origins of Space Weather and Space Climate

Abstract

In view of the construction of new sunspot-based activity indices and proxies, we conducted a comprehensive survey of all existing catalogs providing detailed parameters of photospheric features over long time intervals. Although there are a fair number of such catalogs, a global evaluation showed that they suffer from multiple limitations: finite or fragmented time coverage, limited temporal overlap between catalogs, and, more importantly, a mismatch in contents and conventions. Starting from the existing material, we demonstrate how the information from parallel catalogs can be merged to form a much more comprehensive record of sunspots and sunspot groups. To do this, we use the uniquely detailed Debrecen Photoheliographic Data (DPD), which is already a composite of several ground-based observatories and of SOHO data, and the USAF/Mount Wilson catalog from the Solar Observing Optical Network (SOON). We also outline our cross-identification method, which was needed to match the non-overlapping solar active-region nomenclature. This proved to be the most critical and subtle step when working with multiple catalogs. This effort, focused here first on the last two solar cycles, should lead to a better central database that collects all available sunspot group parameters to address future solar-cycle studies beyond the traditional sunspot-index time series [R i].

Keywords

Catalogs Surveys Sun: photosphere Sunspots Methods: data analysis Statistical 

Notes

Acknowledgements

This work was funded by the European Community’s Seventh Framework Program (FP7/2007-2013) under grant agreement No. 218816 ( www.soteria-space.eu ). We also wish to thank all the staff at the Konkoly Heliophysical Observatory for their invaluable help. We also acknowledge the support from the Belgian Solar-Terrestrial Center of Excellence (STCE) funded through the Belgian Science Policy Office (BELSPO).

References

  1. Baranyi, T., Gyori, L., Ludmány, A., Coffey, H.E.: 2001, Comparison of sunspot area data bases. Mon. Not. Roy. Astron. Soc. 323, 223 – 230. doi: 10.1046/j.1365-8711.2001.04195.x. ADSCrossRefGoogle Scholar
  2. Bray, R.J., Loughhead, R.E.: 1964, Sunspots, International Astrophysics Series, Chapman and Hall, London. Google Scholar
  3. Chatfield, C., Collins, A.J.: 1990, Introduction to Multivariate Analysis, Chapman and Hall, London. Google Scholar
  4. Golub, G.H., Van Loan, C.F.: 2000, Matrix Computations, Johns Hopkins Press, Baltimore. Google Scholar
  5. Gyori, L.: 1998, Automation of area measurement of sunspots. Solar Phys. 180, 109 – 130. ADS: 1998SoPh..180..109G, doi: 10.1023/A:1005081621268. ADSCrossRefGoogle Scholar
  6. Gyori, L., Baranyi, T., Ludmány, A.: 2011, Photospheric data programs at the Debrecen observatory. IAU Proc. 273, 403. Google Scholar
  7. Gyori, L., Baranyi, T., Muraközy, J., Ludmány, A.: 2005, Recent advances in the Debrecen sunspot catalogues. Mem. Soc. Astron. Ital. 76, 981. ADSGoogle Scholar
  8. Hathaway, D.H.: 2010, The solar cycle. Living Rev. Solar Phys. 7(1). http://www.livingreviews.org/lrsp-2010-1.
  9. Hoyt, D.V., Schatten, K.H.: 1998, Group sunspot numbers: a new solar activity reconstruction. Solar Phys. 181, 491 – 512. ADS:1998SoPh..181..491H, doi: 10.1023/A:1005056326158. ADSCrossRefGoogle Scholar
  10. Kraskov, A., Stögbauer, H., Grassberger, P.: 2004, Estimating mutual information. Phys. Rev. E 69(6), 066138. doi: 10.1103/PhysRevE.69.066138. MathSciNetADSGoogle Scholar
  11. Lapenta, G., SOTERIA Team: 2007, SOTERIA: SOlar-TERrestrial Investigations and Archives. AGU Fall Meeting Abstracts, A338. Google Scholar
  12. Lefèvre, L., Clette, F.: 2011, A global small sunspot deficit at the base of the index anomalies of solar cycle 23. Astron. Astrophys. 536, L11. doi: 10.1051/0004-6361/201118034. ADSCrossRefGoogle Scholar
  13. McIntosh, P.S.: 1990, The classification of sunspot groups. Solar Phys. 125, 251 – 267. doi: 10.1007/BF00158405. ADSCrossRefGoogle Scholar
  14. Mezo, G., Baranyi, T.: 2005, HTML presentation of the Debrecen photoheliographic data sunspot catalogue. Mem. Soc. Astron. Ital. 76, 1004. ADSGoogle Scholar
  15. Otruba, W.: 2006, Solar monitoring program at Kanzelhöhe observatory. Sun Geosph. 1(2), 020000. Google Scholar
  16. Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., Wolfson, C.J., Zayer, I., MDI Engineering Team: 1995, The solar oscillations investigation – Michelson Doppler Imager. Solar Phys. 162, 129 – 188. doi: 10.1007/BF00733429. ADSCrossRefGoogle Scholar
  17. Solanki, S.K., Usoskin, I.G., Kromer, B., Schüssler, M., Beer, J.: 2004, Unusual activity of the Sun during recent decades compared to the previous 11 000 years. Nature 431, 1084 – 1087. doi: 10.1038/nature02995. ADSCrossRefGoogle Scholar
  18. Steinhilber, F., Abreu, J.A., Beer, J.: 2008, Solar modulation during the Holocene. Astrophys. Space Sci. Trans. 4, 1 – 6. doi: 10.5194/astra-4-1-2008. ADSCrossRefGoogle Scholar
  19. Tapping, K.F., Detracey, B.: 1990, The origin of the 10.7 CM flux. Solar Phys. 127, 321 – 332. doi: 10.1007/BF00152171. ADSCrossRefGoogle Scholar
  20. Vonmoos, M., Beer, J., Muscheler, R.: 2006, Large variations in Holocene solar activity: constraints from 10Be in the Greenland Ice Core Project ice core. J. Geophys. Res. 111, 10105. doi: 10.1029/2005JA011500. CrossRefGoogle Scholar
  21. Wolf, R.: 1850, Mittheilungen über die Sonnenflecken III. Astron. Mitt. Eidenöss. Sternwarte Zurich 1, 27 – 50. ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Royal Observatory of BelgiumBrusselsBelgium

Personalised recommendations