Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Multiscale Magnetic Underdense Regions on the Solar Surface: Granular and Mesogranular Scales

  • 222 Accesses

  • 12 Citations

Abstract

The Sun is a non-equilibrium, dissipative system subject to an energy flow that originates in its core. Convective overshooting motions create temperature and velocity structures that show a temporal and spatial multiscale evolution. As a result, photospheric structures are generally considered to be a direct manifestation of convective plasma motions. The plasma flows in the photosphere govern the motion of single magnetic elements. These elements are arranged in typical patterns, which are observed as a variety of multiscale magnetic patterns. High-resolution magnetograms of the quiet solar surface revealed the presence of multiscale magnetic underdense regions in the solar photosphere, commonly called voids, which may be considered to be a signature of the underlying convective structure. The analysis of such patterns paves the way for the investigation of all turbulent convective scales, from granular to global. In order to address the question of magnetic structures driven by turbulent convection at granular and mesogranular scales, we used a voids-detection method. The computed distribution of void length scales shows an exponential behavior at scales between 2 and 10 Mm and the absence of features at mesogranular scales. The absence of preferred scales of organization in the 2 – 10 Mm range supports the multiscale nature of flows on the solar surface and the absence of a mesogranular convective scale.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Aikio, J., Mähönen, P.: 1998, Astrophys. J. 497, 534.

  2. Berger, T.E., Löfdah, M.G., Shin, R.A., Title, A.M.: 1998, Astrophys. J. 495, 973.

  3. Berrilli, F., Ermolli, I., Florio, A., Pietropaolo, E.: 1999, Astron. Astrophys. 344, 965.

  4. Berrilli, F., Consolini, G., Pietropaolo, E., Caccin, B., Penza, V., Lepreti, F.: 2002, Astron. Astrophys. 381, 253.

  5. Berrilli, F., Del Moro, D., Consolini, G., Pietropaolo, E., Duvall, T.L. Jr., Kosovichev, A.G.: 2004, Solar Phys. 221, 33. ADS: 2004SoPh..221...33B . doi: 10.1023/B:SOLA-0000033368-00217-de .

  6. Berrilli, F., Del Moro, D., Russo, S., Consolini, G., Straus, Th.: 2005a, Astrophys. J. 632, 677.

  7. Berrilli, F., Del Moro, D., Florio, A., Santillo, L.: 2005b, Solar Phys. 228, 81. ADS: 2005SoPh..228...81B . doi: 10.1007/s11207-005-5000-z .

  8. Bray, R.J., Loughead, R.E., Durrant, C.J.: 1984, The Solar Granulation, 2nd edn., Cambridge University Press, Cambridge

  9. Cattaneo, F., Lenz, D., Weiss, N.: 2001, Astrophys. J. Lett. 563, L91.

  10. De Wijn, A.G., Müller, D.: 2009, In: Lites, B., Cheung, M., Magara, T., Mariska, J., Reeves, K. (eds.) The Second Hinode Science Meeting: Beyond Discovery – Toward Understanding CS-415, Astron. Soc. Pac., San Francisco, 211.

  11. De Wijn, A.G., Rutten, R.J., Haverkamp, E.M.W.P., Suetterlin, P.: 2005, Astron. Astrophys. 441, 1183.

  12. Domínguez Cerdeña, I., Kneer, F., Sánchez Almeida, J.: 2003, Astrophys. J. Lett. 582, L55.

  13. Domínguez Cerdeña, I., Sánchez Almeida, J., Kneer, F.: 2003, Astron. Astrophys. 407, 741.

  14. Einasto, J., Einasto, M., Gramann, M.: 1989, Mon. Not. Roy. Astron. Soc. 238, 155.

  15. Khomenko, E.V., Collados, M., Solanki, S.K., Lagg, A., Trujillo Bueno, J.: 2003, Astron. Astrophys. 408, 1115.

  16. Lawrence, J.K., Ruzmaikin, A.A., Cadavid, A.C.: 1993, Astrophys. J. 417, 805.

  17. Lites, B.W., Kubo, M., Socas-Navarro, H., Berger, T., Frank, Z., Shine, R., Tarbell, T., Title, A., Ichimoto, K., Katsukawa, Y., Tsuneta, S., Suematsu, Y., Shimizu, T., Nagata, S.: 2008, Astrophys. J. 672, 1237.

  18. Manso Sainz, R., Martìnez González, M.J., Asensio Ramos, A.: 2011, Astron. Astrophys. 531, L9.

  19. Nordlund, Å., Stein, R.F., Asplund, M.: 2009, Living Rev. Solar Phys. 6, 2. http://www.livingreviews.org/lrsp-2009-2 .

  20. November, L.J., Simon, G.W.: 1988, Astrophys. J. 333, 442.

  21. Rast, M.P.: 2003, Astrophys. J. Lett. 597, 1200.

  22. Rees, D.E., Semel, M.D.: 1979, Astron. Astrophys. 74, 1.

  23. Rieutord, M., Roudier, Th., Rincon, F., Malherbe, J.M., Meunier, N., Berger, T., Frank, Z.: 2010, Astron. Astrophys. 512, A4.

  24. Roudier, Th., Muller, R.: 1986, Solar Phys. 107, 11. ADS: 1986SoPh..107...11R . doi: 10.1007/BF00155337 .

  25. Sànchez Almeida, J.: 2003, Astron. Astrophys. 411, 615.

  26. Solanki, S.K., Zufferey, D., Lin, H., Rüedi, I., Kuhn, J.R.: 1996, Astron. Astrophys. 310, L33.

  27. Stein, R.F., Nordlund, Å.: 2006, Astrophys. J. Lett. 642, L1246.

  28. Thomas, J.H.: 1990, In: Russel, C.T., Priest, E.R., Lee, L.C. (eds.) Physics of Magnetic Flux Ropes, AGU Geophys. Monogr. 58, AGU, Washington, 133.

  29. Trujillo Bueno, J.: 2003, In: Piskunov, N., Weiss, W.W., Gray, D.F. (eds.) Modelling of Stellar Atmospheres, IAU Symp. 210, Astron. Soc. Pac., San Francisco.

  30. Tsuneta, S., Ichimoto, K., Katsukawa, Y., Nagata, S., Otsubo, M., Shimizu, T., Suematsu, Y., Nakagiri, M., Noguchi, M., Tarbell, T., et al.: 2008, Solar Phys. 249, 167. ADS: 2008SoPh..249..167T . doi: 10.1007/s11207-008-9174-z .

  31. Uritsky, V.M., Davila, J.M.: 2012, Astrophys. J. 748, 60.

  32. Victor, Y.: 1989, Phys. Rev. Lett. 63, 1965.

  33. Viticchié, B., Sánchez Almeida, J., Del Moro, D., Berrilli, F.: 2011, Astron. Astrophys. 526, A60.

  34. Yelles Chaouche, L., Moreno-Insertis, F., Martínez Pillet, V., Wiegelmann, T., Bonet, J.A., Knolker, M., Bellot Rubio, L.R., del Toro Iniesta, J.C., Barthol, P., Gandorfer, A., Schmidt, W., Solanki, S.K.: 2011, Astrophys. J. Lett. 727, L30.

Download references

Acknowledgements

We wish to thank Bartolomeo Viticchiè and Dario del Moro for their contribution in the analysis of the Hinode data and numerical procedures, Michael Senno and Roberto Piazzesi for their contributions in reviewing the manuscript, and the reviewer, Thierry Roudier, for useful suggestions. This project is supported by the University of Rome Tor Vergata Astronomy Ph.D. Program. Hinode is a Japanese mission developed and launched by ISAS/JAXA, with NAOJ as domestic partner and NASA and STFC (UK) as international partners. It is operated by these agencies in cooperation with ESA and NSC (Norway).

Author information

Correspondence to F. Berrilli.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Berrilli, F., Scardigli, S. & Giordano, S. Multiscale Magnetic Underdense Regions on the Solar Surface: Granular and Mesogranular Scales. Sol Phys 282, 379–387 (2013). https://doi.org/10.1007/s11207-012-0179-2

Download citation

Keywords

  • Granulation
  • Mesogranulation
  • Magnetic fields, photosphere