Advertisement

Solar Physics

, Volume 284, Issue 1, pp 245–259 | Cite as

On Fields and Mass Constraints for the Uniform Propagation of Magnetic-Flux Ropes Undergoing Isotropic Expansion

  • Daniel Benjamín BerdichevskyEmail author
FLUX-ROPE STRUCTURE OF CORONAL MASS EJECTIONS

Abstract

An analytical 3-D magnetohydrodynamic (MHD) solution of a magnetic-flux rope (FR) is presented. This FR solution may explain the uniform propagation, beyond ∼ 0.05 AU, of coronal mass ejections (CMEs) commonly observed by today’s missions like The Solar Mass Ejection Imager (SMEI), Solar and Heliospheric Observatory (SOHO) and Solar Terrestrial Relations Observatory (STEREO), tracked to tens of times the radius of the Sun, and in some cases up to 1 AU, and/or beyond. Once a CME occurs, we present arguments regarding its evolution based on its mass and linear momentum conservation. Here, we require that the gravitational and magnetic forces balance each other in the framework of the MHD theory for a simple model of the evolution of a CME, assuming it interacts weakly with the steady solar wind. When satisfying these ansätze we identify a relation between the transported mechanical mass of the interplanetary CME with its geometrical parameters and the intensity of the magnetic field carried by the structure. In this way we are able to estimate the mass of the interplanetary CME (ICME) for a list of cases, from the Wind mission records of ICME encountered near Earth, at 1 AU. We obtain a range for masses of ∼ 109 to 1013 kg, or assuming a uniform distribution, of ∼ 0.5 to 500 cm−3 for the hadron density of these structures, a result that appears to be consistent with observations.

Keywords

CME/ICME mass Time dependent MHD flux-rope model Magnetohydrodynamics Transient flows in inner heliosphere 

Notes

Acknowledgements

I acknowledge my father Carlos David, for his unconditional support of a whole life. Also I acknowledge the professional support of Santiago Berdichevsky, who helped to put this text in better English, making it more understandable.

References

  1. Abramowitz, M., Stegun, I.A.: 1972, Handbook of Mathematical Functions, 9th edn. Dover, New York. zbMATHGoogle Scholar
  2. Albertson, V.D., Thorson, J.M., Clayton, R.E., Tripathy, R.E.: 1973, Solar induced currents in power systems: cause and effects. IEEE Trans. Power Appar. Syst. PAS-92, 471. CrossRefGoogle Scholar
  3. Bartels, J.: 1962, Collection of Geomagnetic Planetary Indices KP and Derived Daily Indices, AP and CP for the Years 1932 to 1961, AGU, Washington. QC811.B28. Google Scholar
  4. Berdichevsky, D.B., Lepping, R.P., Farrugia, C.J.: 2003, Geometric considerations of the evolution of magnetic flux ropes. Phys. Rev. E 67, 036405. doi: 10.1103/PhysRevE.036405. ADSCrossRefGoogle Scholar
  5. Berdichevsky, D.B., Stenborg, G., Vourlidas, A.: 2011, Deriving the physical parameters of a solar ejection with an isotropic magnetohydrodynamic evolutionary model. Astrophys. J. 741, 47. doi: 10.1088/0004-637X/741/1/47. ADSCrossRefGoogle Scholar
  6. Berdichevsky, D.B., Farrugia, C.J., Thompson, B.J., Lepping, R.P., Reames, V.V., Kaiser, M.L., Steinberg, J.T., Plunkett, S.P., Michels, D.J.: 2002, Halo-coronal mass ejections near the 23rd solar minimum: lift-off, inner heliosphere, and in situ (1 AU) signatures. Ann. Geophys. 20, 891. ADSCrossRefGoogle Scholar
  7. Berdichevsky, D.B., Richardson, I., Lepping, R.P., Martin, S., 2005, On the origin and configuration of the 20 March 2003 interplanetary shock and magnetic cloud at 1 AU. J. Geophys. Res. 110, A09105. doi: 10.1029/2004JA010662. ADSCrossRefGoogle Scholar
  8. Bothmer,V., Schwenn, R.: 1998, The structure of magnetic clouds in the solar wind. Ann. Geophys. 16, 1. ADSCrossRefGoogle Scholar
  9. Burlaga, L.F.: 1988, Magnetic clouds and force-free fields with constant alpha. J. Geophys. Res. 93, 7217. ADSCrossRefGoogle Scholar
  10. Carrington, R.C.: 1859, Description of a singular appearance seen in the Sun on September 1, 1859. Mon. Not. Roy. Astron. Soc. 20, 13. ADSGoogle Scholar
  11. Chamberlain, J.W.: 1960, Interplanetary gas II. Expansion of a model solar corona. Astrophys. J. 131, 47. ADSCrossRefGoogle Scholar
  12. Chamberlain, J.W.: 1961, Interplanetary gas III. A hydrodynamical model of the corona. Astrophys. J. 133, 675. MathSciNetADSCrossRefGoogle Scholar
  13. Chapman, S.: 1957, Notes on the solar corona and the terrestrial ionosphere. Smithson. Contrib. Astrophys. 2, 1. ADSCrossRefGoogle Scholar
  14. Czech, P., Chano, S., Huynh, H., Dutil, A.: 1992, The hydro-Quebec system blackout of 13 March 1989: system response to geomagnetic disturbance. In: Proc. EPRI Conf. Geomagnetically Induced Currents EPRI TR-100450, Burlingame, CA. 19-1. Google Scholar
  15. Farrugia, C.J., Berdichevsky, D.B.: 2004, Evolutionary signatures in complex ejecta and their driven shocks. Ann. Geophys. 22, 3679. ADSCrossRefGoogle Scholar
  16. Goldstein, H.: 1956, Classical Mechanics, 4th edn. Addison Wesley, Cambridge. Google Scholar
  17. Garrett, H.B.: 1981, The charging of spacecraft surfaces. Rev. Geophys. 19, 577. ADSCrossRefGoogle Scholar
  18. Hidalgo, M.A., Nieves-Chinchilla, T., Cid, C.: 2002, Elliptical cross-section model for the magnetic topology of magnetic clouds. Geophys. Res. Lett. 29, 1637. doi: 10.1029/2001GL013875. ADSCrossRefGoogle Scholar
  19. Hirshberg, J., Bame, S.J., Robbins, D.E.: 1972, Solar flares and solar wind helium enrichments: July 1965. Solar Phys. 23, 467. ADSCrossRefGoogle Scholar
  20. Holzer, T.E.: 1979. In: Parker, E.N., Kennel, C.F., Lanzerotti, L.J. (eds.): Solar and Solar Wind Plasma Physics. 1, North-Holland, Amsterdam, 101. Google Scholar
  21. Hu, Q., Sonnerup, U.O.: 2001, Reconstruction of magnetic flux-ropes in the solar wind. Geophys. Res. Lett. 28, 467. ADSCrossRefGoogle Scholar
  22. Huttunen, K.E.J., Schwenn, R., Bothmer, V., Koskinen, H.E.J.: 2005, Properties and geoffectiveness of magnetic clouds in the rising, maximum and early declining phases of solar cycle 23. Ann. Geophys. 23, 625. ADSCrossRefGoogle Scholar
  23. Jackson, J.D.: 1966, Electrodinámica Clásica, 1st Spanish edn. Alhambra, Madrid. Google Scholar
  24. Landau, L., Lifchitz, E.: 1966, Physique Théorique, Tome i, Mécanique, 2me edn. MIR, Moscow. Google Scholar
  25. Lanzerotti, L.J., Breglia, C., Maurer, D.W., Maclennan, C.G.: 1998, Studies of spacecraft charging on a geosynchronous telecommunications satellite. Adv. Space Res. 22, 79. ADSCrossRefGoogle Scholar
  26. Le, G., Gosling, J.T., Russell, C.T., Elphic, R.C., Thomsen, M.F., Newbury, J.A.: 1999, The magnetic and plasma of flux transfer events. J. Geophys. Res. 104, 233. ADSCrossRefGoogle Scholar
  27. Le, G., Zheng, Y., Russell, C.T., Pfaff, R.F., Slavin, J.A., Lin, N., Mozer, F., Parks, G., Wilber, M., Petrinec, S.M., Lucek, E.A., Réme, H.: 2008, Flux transfer events simultaneously observed by Polar and Cluster: flux rope in the subsolar region and flux tube addition to the polar cusp. J. Geophys. Res. 113, A01205. ADSCrossRefGoogle Scholar
  28. Lepping, R.P., Jones, J.E., Burlaga, L.F.: 1990, Magnetic field structure of interplanetary magnetic clouds at 1 AU. J. Geophys. Res. 108, 11957. ADSCrossRefGoogle Scholar
  29. Lepping, R.P., Berdichevsky, D.B., Burlaga, L.F., Lazarus, A.J., Kasper, J., Desch, M.D., Wu, C.C., Reames, D.-V., Singer, H.J., Smith, C.W., Ackerson, K.L.: 2001a, The Bastille day magnetic clouds and upstream shocks: near earth interplanetary observations. Solar Phys. 204, 287. ADSCrossRefGoogle Scholar
  30. Lepping, R.P., Berdichevsky, D.B., Szabo, A., Lazarus, A.J., Thompson, B.J.: 2001b, Upstream shocks and interplanetary magnetic cloud speed and expansion: Sun, Wind, and Earth observations. In: Chao, K. (ed.) COSPAR 2000. Adv. Space Res., 26, 87. Google Scholar
  31. Lepping, R.P, Berdichevsky, D.B., Szabo, A., Arqueros, C., Lazarus, A.J.: 2003, Profile of an average magnetic cloud at 1 AU for the quiet solar phase: Wind observations. Solar Phys. 212, 425. ADSCrossRefGoogle Scholar
  32. Lepping, R.P., Berdichevsky, D.B., Wu, C.-C., Szabo, A., Narock, T., Mariani, F., Lazarus, A.J., Quivers, A.J.: 2006, A summary of Wind magnetic clouds for years 1995 – 2003: model-fitted parameters, associated errors and classifications. Ann. Geophys. 24, 215. ADSCrossRefGoogle Scholar
  33. Lepping, R.P., Wu, C.-C., Berdichevsky, D.B., Szabo, A: 2011, Magnetic clouds at/near the 2007 – 2009 solar minimum: frequency of occurrence and some unusual properties. Solar Phys. 274, 345. ADSCrossRefGoogle Scholar
  34. Lundquist, S.: 1951, Magnetohydrostatic fields. Ark. Fys. 2, 61. MathSciNetGoogle Scholar
  35. Osherovich, V.A., Fainberg, J., Stone, R.G., MacDowall, R.J., Berdichevsky, D.B.: 1997 In: Proc. 31st. ESLAB Symp., Correlated Phenomena at the Sun, in the Heliosphere and in Geospace, SA SP-415, ESA, Noordwijk, 771. Google Scholar
  36. Parker, E.N.: 1958, Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 124, 664. ADSCrossRefGoogle Scholar
  37. Pirjola, R., Lehtinen, M.: 1985, Currents produced in the Finnish natural gas pipeline by geomagnetically induced electric fields. Ann. Geophys. 3, 485. Google Scholar
  38. Richardson, I.J., Cane, H.V.: 2004, Identification of interplanetary coronal mass ejections at 1 AU using multiple solar wind plasma composition anomalies. J. Geophys. Res. 109, A09104. ADSCrossRefGoogle Scholar
  39. Richardson, D.J., Kasper, C., Wang, C., Belcher, J.W., Lazarus, A.J.: 2008, Cool heliosheath plasma and deceleration of the upstream solar wind at the termination shock. Nature 454(3), 63. ADSCrossRefGoogle Scholar
  40. Rouillard, A.P., Davies, J.A., Forsyth, R.J., Savani, N., Sheeley, R., Thernisien, A., Burlaga, L.F., Zhang, T.-L., Vourlidas, A., Howard, R.A., Wang, Y.-M., Rees, A., Anderson, B., Krimiges, T., Slavin, J., Carr, C.M., Tsang, S., Lockwood, M., Davis, C.J., Harrison, R.A., Bewsher, D., Crothers, S.R, Eyles, C.J., Brown, D.S., Habgood, M., Perry, C.H., Whittaker, I., Jones, G.H., Coates, A.J., Reande, M., Frahm, R.A., Winningan, J.D.: 2009, A solar storm observed from the Sun to Venus using the STEREO Venus-Express, and MESSENGER spacecraft. J. Geophys. Res. 114, 07106. doi: 10.1029/2008JA014034. CrossRefGoogle Scholar
  41. Sittler, E.C. Jr., Burlaga, L.F.: 1998, Electron temperatures within magnetic clouds between 2 and 4 AU: Voyager 2 observations. J. Geophys. Res. 103, 17447. ADSCrossRefGoogle Scholar
  42. Shimazu, H., Vandas, M.: 2002, A self-similar solution of expanding cylindrical flux ropes for any polytropic index value. Earth Planet Sci. J. 54, 783. ADSGoogle Scholar
  43. Slavin, J.A., Fairfield, D.H., Lepping, R.P., Hesse, M., Ieda, A., Tanskanen, E., Østgaard, N., Mukai, T., Nagai, T., Singer, H.J., Sutcliffe, P.R.: 2002, Simultaneous observations of earthward flow bursts and plasmoid ejection during magnetospheric substorms. J. Geophys. Res. 107, A7. doi: 10.1029/2000JA003501. CrossRefGoogle Scholar
  44. Thernisien, A., Vourlidas, A., Howard, R.A.: 2009, A catalog of white light coronal mass ejections observed by the STEREO/SECCHI data. Solar Phys. 256, 111. ADSCrossRefGoogle Scholar
  45. WIND MFI Science Team: 1995, (– start date), Page (–Table 2, ‘a living document’) at http://wind.gsfc.nasa.gov/mfi/mag_cloud_S1.html.
  46. Wood, B.E., Howard, R.A.: 2009, An empirical reconstruction of the 2008 april 26 coronal mass ejection. Astrophys. J. 702, 901. doi: 10.1088/0004-637X/702/2/901. ADSCrossRefGoogle Scholar
  47. Wood, B.E., Wu, C.-C., Howard, R.A., Socker, D.G., Rouillard, A.P.: 2011, Empirical reconstruction and numerical modeling of the first geoeffective coronal mass ejection of solar cycle 24. Astrophys. J. 729, 70. doi: 10.1088/0004-637X/729/1/70. ADSCrossRefGoogle Scholar
  48. Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.-C., Plunkett, S.P., Rich, N.B., Howard, R.A.: 2004, A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res. 109, A07105. doi: 101029/2003JA010282. ADSCrossRefGoogle Scholar
  49. Zirin, H.: 1966, The Solar Atmosphere, Blaisdell, Waltham. Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.College ParkUSA

Personalised recommendations