Solar Physics

, Volume 282, Issue 2, pp 503–521 | Cite as

Multiwavelength Study of a Solar Eruption from AR NOAA 11112 I. Flux Emergence, Sunspot Rotation and Triggering of a Solar Flare

  • Pankaj Kumar
  • Sung-Hong Park
  • K.-S. Cho
  • S.-C. Bong
Article

Abstract

We analyze the multiwavelength observations of an M2.9/1N flare that occurred in the active region (AR) NOAA 11112 in the vicinity of a huge filament system on 16 October 2010. SDO/HMI magnetograms reveal the emergence of a bipole (within the existing AR) 50 hours prior to the flare event. During the emergence, both the positive and negative sunspots in the bipole show translational as well as rotational motion. The positive-polarity sunspot shows significant motion/rotation in the south-westward/clockwise direction, and we see continuously pushing/sliding of the surrounding opposite-polarity field region. On the other hand, the negative-polarity sunspot moves/rotates in the westward/anticlockwise direction. The positive-polarity sunspot rotates ≈ 70 within 30 hours, whereas the one with negative polarity rotates ≈ 20 within 10 hours. SDO/AIA 94 Å EUV images show the emergence of a flux tube in the corona, consistent with the emergence of the bipole in HMI. The footpoints of the flux tube were anchored in the emerging bipole. The initial brightening starts at one of the footpoints (western) of the emerging loop system, where the positive-polarity sunspot pushes/slides towards a nearby negative-polarity field region. A high speed plasmoid ejection (speed ≈ 1197 km s−1) was observed during the impulsive phase of the flare, which suggests magnetic reconnection of the emerging positive-polarity sunspot with the surrounding opposite-polarity field region. The entire AR shows positive-helicity injection before the flare event. Moreover, the newly emerging bipole reveals the signature of a negative (left-handed) helicity. These observations provide unique evidence of the emergence of twisted flux tubes from below the photosphere to coronal heights, triggering a flare mainly due to the interaction between the emerging positive-polarity sunspot and a nearby negative-polarity sunspot by the shearing motion of the emerging positive sunspot towards the negative one. Our observations also strongly support the idea that the rotation can most likely be attributed to the emergence of twisted magnetic fields, as proposed by recent models.

Keywords

Solar flare – coronal loops Magnetic field Flux rope Magnetic reconnection 

Notes

Acknowledgements

We express our gratitude to the referees for providing constructive comments/suggestions, which improved the manuscript considerably. SDO is a mission for NASA’s Living With a Star (LWS) Program. We are thankful for the radio data obtained from RSTN network and GBRSBS. The Global High Resolution Hα Network is operated by the Space Weather Research Lab, New Jersey Institute of Technology. PK thanks Prof. P.F. Chen and Dr. A.K. Srivastava for fruitful discussions. This work has been supported by the “Development of Korea Space Weather Center” project of KASI, and the KASI basic research fund.

Supplementary material

(AVI 1.0 MB)

(AVI 1.8 MB)

References

  1. Amari, T., Luciani, J.F., Aly, J.J., Tagger, M.: 1996, Very fast opening of a three-dimensional twisted magnetic flux tube. Astrophys. J. Lett. 466, L39 – L42. doi: 10.1086/310158. ADSCrossRefGoogle Scholar
  2. Barnes, C.W., Sturrock, P.A.: 1972, Force-free magnetic-field structures and their role in solar activity. Astrophys. J. 174, 659 – 670. doi: 10.1086/151527. ADSCrossRefGoogle Scholar
  3. Benz, A.O., Grigis, P.C., Csillaghy, A., Saint-Hilaire, P.: 2005, Survey on solar X-ray flares and associated coherent radio emissions. Solar Phys. 226, 121 – 142. doi: 10.1007/s11207-005-5254-5. ADSCrossRefGoogle Scholar
  4. Berger, M.A., Field, G.B.: 1984, The topological properties of magnetic helicity. J. Fluid Mech. 147, 133 – 148. doi: 10.1017/S0022112084002019. MathSciNetADSCrossRefGoogle Scholar
  5. Brown, D.S., Nightingale, R.W., Alexander, D., Schrijver, C.J., Metcalf, T.R., Shine, R.A., Title, A.M., Wolfson, C.J.: 2003, Observations of rotating sunspots from TRACE. Solar Phys. 216, 79 – 108. doi: 10.1023/A:1026138413791. ADSCrossRefGoogle Scholar
  6. Canfield, R.C., Hudson, H.S., McKenzie, D.E.: 1999, Sigmoidal morphology and eruptive solar activity. Geophys. Res. Lett. 26, 627 – 630. doi: 10.1029/1999GL900105. ADSCrossRefGoogle Scholar
  7. Chae, J.: 2007, Measurements of magnetic helicity injected through the solar photosphere. Adv. Space Res. 39, 1700 – 1705. doi: 10.1016/j.asr.2007.01.035. ADSCrossRefGoogle Scholar
  8. Chae, J., Sakurai, T.: 2008, A test of three optical flow techniques-LCT, DAVE, and NAVE. Astrophys. J. 689, 593 – 612. doi: 10.1086/592761. ADSCrossRefGoogle Scholar
  9. Chae, J., Moon, Y.J., Rust, D.M., Wang, H., Goode, P.R.: 2003, Magnetic helicity pumping by twisted flux tube expansion. J. Korean Astron. Soc. 36, 33 – 41. ADSCrossRefGoogle Scholar
  10. Chandra, R., Schmieder, B., Mandrini, C.H., Démoulin, P., Pariat, E., Török, T., Uddin, W.: 2011, Homologous flares and magnetic field topology in active region NOAA 10501 on 20 November 2003. Solar Phys. 269, 83 – 104. doi: 10.1007/s11207-010-9670-9. ADSCrossRefGoogle Scholar
  11. Chen, P.F.: 2011, Coronal mass ejections: models and their observational basis. Living Rev. Solar Phys. 8, 1. ADSGoogle Scholar
  12. Chen, P.F., Shibata, K.: 2000, An emerging flux trigger mechanism for coronal mass ejections. Astrophys. J. 545, 524 – 531. doi: 10.1086/317803. ADSCrossRefGoogle Scholar
  13. Cho, K.S., Lee, J., Bong, S.C., Kim, Y.H., Joshi, B., Park, Y.D.: 2009, A coronal mass ejection and hard x-ray emissions associated with the kink instability. Astrophys. J. 703, 1 – 7. doi: 10.1088/0004-637X/703/1/1. ADSCrossRefGoogle Scholar
  14. Dabrowski, B.P., Benz, A.O.: 2009, Correlation between decimetric radio emission and hard X-rays in solar flares. Astron. Astrophys. 504, 565 – 573. doi: 10.1051/0004-6361/200811108. ADSCrossRefGoogle Scholar
  15. Démoulin, P., Pariat, E.: 2009, Modelling and observations of photospheric magnetic helicity. Adv. Space Res. 43, 1013 – 1031. doi: 10.1016/j.asr.2008.12.004. ADSCrossRefGoogle Scholar
  16. Démoulin, P., Mandrini, C.H., van Driel-Gesztelyi, L., López Fuentes, M.C., Aulanier, G.: 2002, The magnetic helicity injected by shearing motions. Solar Phys. 207, 87 – 110. ADSCrossRefGoogle Scholar
  17. Fan, Y.: 2009, The emergence of a twisted flux tube into the solar atmosphere: sunspot rotations and the formation of a coronal flux rope. Astrophys. J. 697, 1529 – 1542. doi: 10.1088/0004-637X/697/2/1529. ADSCrossRefGoogle Scholar
  18. Foullon, C., Verwichte, E., Nakariakov, V.M., Nykyri, K., Farrugia, C.J.: 2011, Magnetic Kelvin–Helmholtz instability at the Sun. Astrophys. J. Lett. 729, L8. doi: 10.1088/2041-8205/729/1/L8. ADSCrossRefGoogle Scholar
  19. Gibson, S.E., Fan, Y., Mandrini, C., Fisher, G., Démoulin, P.: 2004, Observational consequences of a magnetic flux rope emerging into the corona. Astrophys. J. 617, 600 – 613. doi: 10.1086/425294. ADSCrossRefGoogle Scholar
  20. Jain, R., Awasthi, A.K., Chandel, B., Bharti, L., Hanaoka, Y., Kiplinger, A.L.: 2011, Solar Phys. 271, 57 – 74. doi: 10.1007/s11207-011-9793-7. ADSCrossRefGoogle Scholar
  21. Jiang, Y., Zheng, R., Yang, J., Hong, J., Yi, B., Yang, D.: 2012, Rapid sunspot rotation associated with the X2.2 flare on 2011 February 15. Astrophys. J. 744, 50. doi: 10.1088/0004-637X/744/1/50. ADSCrossRefGoogle Scholar
  22. Jockers, K.: 1978, Transport of twist in force-free magnetic flux tubes. Astrophys. J. 220, 1133 – 1136. doi: 10.1086/155998. ADSCrossRefGoogle Scholar
  23. Kumar, P., Manoharan, P.K., Uddin, W.: 2010a, Evolution of solar magnetic field and associated multiwavelength phenomena: flare events on 2003 November 20. Astrophys. J. 710, 1195 – 1204. doi: 10.1088/0004-637X/710/2/1195. ADSCrossRefGoogle Scholar
  24. Kumar, P., Srivastava, A.K., Somov, B.V., Manoharan, P.K., Erdélyi, R., Uddin, W.: 2010b, Evidence of solar flare triggering due to loop-loop interaction caused by footpoint shear motion. Astrophys. J. 723, 1651 – 1664. doi: 10.1088/0004-637X/723/2/1651. ADSCrossRefGoogle Scholar
  25. Kumar, P., Srivastava, A.K., Filippov, B., Uddin, W.: 2010c, Multiwavelength study of the M8.9/3B solar flare from AR NOAA 10960. Solar Phys. 266, 39 – 58. doi: 10.1007/s11207-010-9586-4. ADSCrossRefGoogle Scholar
  26. Kumar, P., Srivastava, A.K., Filippov, B., Erdélyi, R., Uddin, W.: 2011, Multiwavelength observations of a failed flux rope in the eruption and associated M-class flare from NOAA AR 11045. Solar Phys. 272, 301 – 317. doi: 10.1007/s11207-011-9829-z. ADSCrossRefGoogle Scholar
  27. Kumar, P., Cho, K.S., Bong, S.C., Park, S.H., Kim, Y.H.: 2012a, Initiation of Coronal Mass Ejection and associated flare caused by helical kink instability observed by SDO/AIA. Astrophys. J. 746, 67. doi: 10.1088/0004-637X/746/1/67. ADSCrossRefGoogle Scholar
  28. Kumar, P., Cho, K.S., Chen, P.F., Bong, S.C., Park, S.H.: 2012b, Multiwavelength study of a solar eruption from AR NOAA 1112: II. Large scale coronal wave and loop oscillation. Solar Phys. doi: 10.1007/s11207-012-0158-7. Google Scholar
  29. Kurokawa, H.: 1987, Two distinct morphological types of magnetic shear development and their relation to flares. Solar Phys. 113, 259 – 263. doi: 10.1007/BF00147706. ADSCrossRefGoogle Scholar
  30. Kusano, K., Yokoyama, T., Maeshiro, T., Sakurai, T.: 2003, Annihilation of magnetic helicity: a new model for solar flare onset. Adv. Space Res. 32, 1931 – 1936. doi: 10.1016/S0273-1177(03)90628-4. ADSCrossRefGoogle Scholar
  31. LaBonte, B.J., Georgoulis, M.K., Rust, D.M.: 2007, Survey of magnetic helicity injection in regions producing X-class flares. Astrophys. J. 671, 955 – 963. doi: 10.1086/522682. ADSCrossRefGoogle Scholar
  32. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17 – 40. doi: 10.1007/s11207-011-9776-8. ADSCrossRefGoogle Scholar
  33. Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., Curtis, D.W., Pankow, D., Turin, P., Bester, M., Csillaghy, A., Lewis, M., Madden, N., van Beek, H.F., Appleby, M., Raudorf, T., McTiernan, J., Ramaty, R., Schmahl, E., Schwartz, R., Krucker, S., Abiad, R., Quinn, T., Berg, P., Hashii, M., Sterling, R., Jackson, R., Pratt, R., Campbell, R.D., Malone, D., Landis, D., Barrington-Leigh, C.P., Slassi-Sennou, S., Cork, C., Clark, D., Amato, D., Orwig, L., Boyle, R., Banks, I.S., Shirey, K., Tolbert, A.K., Zarro, D., Snow, F., Thomsen, K., Henneck, R., McHedlishvili, A., Ming, P., Fivian, M., Jordan, J., Wanner, R., Crubb, J., Preble, J., Matranga, M., Benz, A., Hudson, H., Canfield, R.C., Holman, G.D., Crannell, C., Kosugi, T., Emslie, A.G., Vilmer, N., Brown, J.C., Johns-Krull, C., Aschwanden, M., Metcalf, T., Conway, A.: 2002, The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys. 210, 3 – 32. doi: 10.1023/A:1022428818870. ADSCrossRefGoogle Scholar
  34. Longcope, D.W., Welsch, B.T.: 2000, A model for the emergence of a twisted magnetic flux tube. Astrophys. J. 545, 1089 – 1100. doi: 10.1086/317846. ADSCrossRefGoogle Scholar
  35. Luoni, M.L., Démoulin, P., Mandrini, C.H., van Driel-Gesztelyi, L.: 2011, Twisted flux tube emergence evidenced in longitudinal magnetograms: magnetic tongues. Solar Phys. 270, 45 – 74. doi: 10.1007/s11207-011-9731-8. ADSCrossRefGoogle Scholar
  36. Magara, T.: 2006, Dynamic and topological features of photospheric and coronal activities produced by flux emergence in the sun. Astrophys. J. 653, 1499 – 1509. doi: 10.1086/508926. ADSCrossRefGoogle Scholar
  37. Maričić, D., Vršnak, B., Stanger, A.L., Veronig, A.M., Temmer, M., Roša, D.: 2007, Acceleration phase of coronal mass ejections: ii. Synchronization of the energy release in the associated flare. Solar Phys. 241, 99 – 112. doi: 10.1007/s11207-007-0291-x. ADSCrossRefGoogle Scholar
  38. Min, S., Chae, J.: 2009, The rotating sunspot in AR 10930. Solar Phys. 258, 203 – 217. doi: 10.1007/s11207-009-9425-7. ADSCrossRefGoogle Scholar
  39. Neupert, W.M.: 1968, Comparison of solar X-ray line emission with microwave emission during flares. Astrophys. J. Lett. 153, L59 – L64. doi: 10.1086/180220. ADSCrossRefGoogle Scholar
  40. Ohyama, M., Shibata, K.: 1998, X-ray plasma ejection associated with an impulsive flare on 1992 October 5: Physical conditions of X-ray plasma ejection. Astrophys. J. 499, 934 – 944. doi: 10.1086/305652. ADSCrossRefGoogle Scholar
  41. Pariat, E., Démoulin, P., Berger, M.A.: 2005, Photospheric flux density of magnetic helicity. Astron. Astrophys. 439, 1191 – 1203. doi: 10.1051/0004-6361:20052663. ADSCrossRefGoogle Scholar
  42. Pariat, E., Démoulin, P., Nindos, A.: 2007, How to improve the maps of magnetic helicity injection in active regions? Adv. Space Res. 39, 1706 – 1714. doi: 10.1016/j.asr.2007.02.047. ADSCrossRefGoogle Scholar
  43. Park, S.h., Chae, J., Wang, H.: 2010, Productivity of solar flares and magnetic helicity injection in active regions. Astrophys. J. 718, 43 – 51. doi: 10.1088/0004-637X/718/1/43. ADSCrossRefGoogle Scholar
  44. Park, S.H., Lee, J., Choe, G.S., Chae, J., Jeong, H., Yang, G., Jing, J., Wang, H.: 2008, The variation of relative magnetic helicity around major flares. Astrophys. J. 686, 1397 – 1403. doi: 10.1086/591117. ADSCrossRefGoogle Scholar
  45. Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3 – 15. doi: 10.1007/s11207-011-9841-3. ADSCrossRefGoogle Scholar
  46. Pevtsov, A.A.: 2002, Active-region filaments and X-ray sigmoids. Solar Phys. 207, 111 – 123. doi: 10.1023/A:1015589802234. ADSCrossRefGoogle Scholar
  47. Pevtsov, A.A.: 2008, What helicity can tell us about solar magnetic fields. J. Astrophys. Astron. 29, 49 – 56. doi: 10.1007/s12036-008-0006-1. ADSCrossRefGoogle Scholar
  48. Pevtsov, A.A., Canfield, R.C., Metcalf, T.R.: 1995, Latitudinal variation of helicity of photospheric magnetic fields. Astrophys. J. Lett. 440, L109 – L112. doi: 10.1086/187773. ADSCrossRefGoogle Scholar
  49. Priest, E.R., Forbes, T.G.: 2002, The magnetic nature of solar flares. Astron. Astrophys. Rev. 10, 313 – 377. doi: 10.1007/s001590100013. ADSCrossRefGoogle Scholar
  50. Régnier, S., Canfield, R.C.: 2006, Evolution of magnetic fields and energetics of flares in active region 8210. Astron. Astrophys. 451, 319 – 330. doi: 10.1051/0004-6361:20054171. ADSCrossRefGoogle Scholar
  51. Rust, D.M., Kumar, A.: 1996, Evidence for helically kinked magnetic flux ropes in solar eruptions. Astrophys. J. Lett. 464, L199 – L202. doi: 10.1086/310118. ADSCrossRefGoogle Scholar
  52. Sakai, J., Nakajima, H., Zaidman, E., Tajima, T., Kosugi, T., Brunel, F.: 1986, Signatures of current loop coalescence in solar flares. In: Dennis, B.R., Orwig, L.E., Kiplinger, A.L. (eds.) NASA Conference Publication, NASA Conference Publication 2449, 393 – 434. Google Scholar
  53. Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207 – 227. doi: 10.1007/s11207-011-9834-2. ADSCrossRefGoogle Scholar
  54. Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A., Tomczyk, S.: 2012, Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 229 – 259. doi: 10.1007/s11207-011-9842-2. ADSCrossRefGoogle Scholar
  55. Schuck, P.W.: 2005, Local correlation tracking and the magnetic induction equation. Astrophys. J. Lett. 632, L53 – L56. doi: 10.1086/497633. ADSCrossRefGoogle Scholar
  56. Schuck, P.W.: 2006, Tracking magnetic footpoints with the magnetic induction equation. Astrophys. J. 646, 1358 – 1391. doi: 10.1086/505015. ADSCrossRefGoogle Scholar
  57. Shibata, K., Masuda, S., Shimojo, M., Hara, H., Yokoyama, T., Tsuneta, S., Kosugi, T., Ogawara, Y.: 1995, Hot-plasma ejections associated with compact-loop solar flares. Astrophys. J. Lett. 451, L83 – L85. doi: 10.1086/309688. ADSCrossRefGoogle Scholar
  58. Srivastava, A.K., Zaqarashvili, T.V., Kumar, P., Khodachenko, M.L.: 2010, Observation of kink instability during small B5.0 solar flare on 2007 June 4. Astrophys. J. 715, 292 – 299. doi: 10.1088/0004-637X/715/1/292. ADSCrossRefGoogle Scholar
  59. Stenflo, J.O.: 1969, A mechanism for the build-up of flare energy. Solar Phys. 8, 115 – 118. doi: 10.1007/BF00150662. ADSCrossRefGoogle Scholar
  60. Su, J., Liu, Y., Liu, J., Mao, X., Zhang, H., Li, H., Wang, X., Xie, W.: 2008, Lorentz force: a possible driving force for sunspot rotation. Solar Phys. 252, 55 – 71. doi: 10.1007/s11207-008-9236-2. ADSCrossRefGoogle Scholar
  61. Temmer, M., Veronig, A.M., Vršnak, B., Rybák, J., Gömöry, P., Stoiser, S., Maričić, D.: 2008, Acceleration in fast halo CMEs and synchronized flare HXR bursts. Astrophys. J. Lett. 673, L95 – L98. doi: 10.1086/527414. ADSCrossRefGoogle Scholar
  62. Temmer, M., Veronig, A.M., Kontar, E.P., Krucker, S., Vršnak, B.: 2010, Combined STEREO/RHESSI study of coronal mass ejection acceleration and particle acceleration in solar flares. Astrophys. J. 712, 1410 – 1420. doi: 10.1088/0004-637X/712/2/1410. ADSCrossRefGoogle Scholar
  63. Tian, L., Alexander, D.: 2006, Role of sunspot and sunspot-group rotation in driving sigmoidal active region eruptions. Solar Phys. 233, 29 – 43. doi: 10.1007/s11207-006-2505-z. ADSCrossRefGoogle Scholar
  64. Tian, L., Alexander, D., Nightingale, R.: 2008, Origins of coronal energy and helicity in NOAA 10030. Astrophys. J. 684, 747 – 756. doi: 10.1086/589492. ADSCrossRefGoogle Scholar
  65. Tiwari, S.K., Venkatakrishnan, P., Gosain, S.: 2010, Magnetic non-potentiality of solar active regions and peak X-ray flux of the associated flares. Astrophys. J. 721, 622 – 629. ADSCrossRefGoogle Scholar
  66. Tokman, M., Bellan, P.M.: 2002, Three-dimensional model of the structure and evolution of coronal mass ejections. Astrophys. J. 567, 1202 – 1210. doi: 10.1086/338699. ADSCrossRefGoogle Scholar
  67. Török, T., Kliem, B.: 2003, The evolution of twisting coronal magnetic flux tubes. Astron. Astrophys. 406, 1043 – 1059. doi: 10.1051/0004-6361:20030692. ADSCrossRefGoogle Scholar
  68. Török, T., Kliem, B.: 2005, Confined and ejective eruptions of kink-unstable flux ropes. Astrophys. J. Lett. 630, L97 – L100. doi: 10.1086/462412. ADSCrossRefGoogle Scholar
  69. Török, T., Chandra, R., Pariat, E., Démoulin, P., Schmieder, B., Aulanier, G., Linton, M.G., Mandrini, C.H.: 2011, Filament interaction modeled by flux rope reconnection. Astrophys. J. 728, 65. doi: 10.1088/0004-637X/728/1/65. ADSCrossRefGoogle Scholar
  70. Ueno, S., Nagata, S., Kitai, R., Kurokawa, H.: 2004, Features of solar telescopes at the Hida observatory and the possibilities of coordinated observations with Solar-B. In: Sakurai, T., Sekii, T. (eds.) the Solar-B Mission and the Forefront of Solar Physics, Astron. Soc. Pacific CS-325, 319. Google Scholar
  71. Veronig, A., Vršnak, B., Dennis, B.R., Temmer, M., Hanslmeier, A., Magdalenić, J.: 2002, Investigation of the Neupert effect in solar flares. I. Statistical properties and the evaporation model. Astron. Astrophys. 392, 699 – 712. doi: 10.1051/0004-6361:20020947. ADSCrossRefGoogle Scholar
  72. Yan, X.L., Qu, Z.Q.: 2007, Rapid rotation of a sunspot associated with flares. Astron. Astrophys. 468, 1083 – 1088. doi: 10.1051/0004-6361:20077064. ADSCrossRefGoogle Scholar
  73. Yan, X.L., Qu, Z.Q., Kong, D.F.: 2008, Relationship between rotating sunspots and flare productivity. Mon. Not. Roy. Astron. Soc. 391, 1887 – 1892. doi: 10.1111/j.1365-2966.2008.14002.x. ADSCrossRefGoogle Scholar
  74. Yan, X.L., Qu, Z.Q., Xu, C.L., Xue, Z.K., Kong, D.F.: 2009, The causality between the rapid rotation of a sunspot and an X3.4 flare. Res. Astron. Astrophys. 9, 596 – 602. doi: 10.1088/1674-4527/9/5/010. ADSCrossRefGoogle Scholar
  75. Yokoyama, T., Shibata, K.: 2001, Magnetohydrodynamic simulation of a solar flare with chromospheric evaporation effect based on the magnetic reconnection model. Astrophys. J. 549, 1160 – 1174. doi: 10.1086/319440. ADSCrossRefGoogle Scholar
  76. Zhang, J., Li, L., Song, Q.: 2007, Interaction between a fast rotating sunspot and ephemeral regions as the origin of the major solar event on 2006 December 13. Astrophys. J. Lett. 662, L35 – L38. doi: 10.1086/519280. ADSCrossRefGoogle Scholar
  77. Zhang, Y., Liu, J., Zhang, H.: 2008, Relationship between rotating sunspots and flares. Solar Phys. 247, 39 – 52. doi: 10.1007/s11207-007-9089-0. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Pankaj Kumar
    • 1
  • Sung-Hong Park
    • 1
  • K.-S. Cho
    • 1
    • 2
    • 3
  • S.-C. Bong
    • 1
  1. 1.Korea Astronomy and Space Science Institute (KASI)DaejeonRepublic of Korea
  2. 2.NASA Goddard Space Flight CenterGreenbeltUSA
  3. 3.Department of PhysicsThe Catholic University of AmericaWashingtonUSA

Personalised recommendations