Advertisement

Solar Physics

, Volume 282, Issue 2, pp 553–564 | Cite as

An Analysis of Solar Global Activity

Article

Abstract

This article proposes a unified observational model of solar activity based on sunspot number and the solar global activity in the rotation of the structures, both per 11-year cycle. The rotation rates show a variation of a half-century period and the same period is also associated to the sunspot amplitude variation. The global solar rotation interweaves with the observed global organisation of solar activity. An important role for this assembly is played by the Grand Cycle formed by the merging of five sunspot cycles: a forgotten discovery by R. Wolf. On the basis of these elements, the nature of the Dalton Minimum, the Maunder Minimum, the Gleissberg Cycle, and the Grand Minima are presented.

Keywords

Solar Activity Rotation Rate Sunspot Number Maunder Minimum Grand Minimum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We acknowledge the Solar Influences Data Analysis Centre (SIDC) for the sunspot number data. I like to thank Dr. Ludwig Klein for careful review of the article. The author thanks the anonymous referee for comments.

References

  1. Balthasar, H.: 2007, Astron. Astrophys. 471, 281. ADSCrossRefGoogle Scholar
  2. Clette, F., Berghmans, D., Vanlommel, P., van der Linden, R., Koeckelenbergh, A., Wauters, L.: 2007, Adv. Space Res. 40, 7 919. CrossRefGoogle Scholar
  3. Faria, H.H., Echer, E., Rigozo, N.R., Vieira, L.E.A., Nordemann, D.J.R., Prestes, A.: 2004, Solar Phys. 223, 305 ADS:2004SoPh..223..305F, doi: 10.1007/s11207-004-5318-y. ADSCrossRefGoogle Scholar
  4. Fritz, H.: 1893, Vierteljahrsschr. Nat.forsch. Ges. Zür. 38, 77. Google Scholar
  5. Gleissberg, W.: 1939, Observatory 62, 158. ADSGoogle Scholar
  6. Gleissberg, W.: 1967, Solar Phys. 2, 231. ADSCrossRefGoogle Scholar
  7. Hathaway, D.H.: 2010, Living Rev. Solar Phys. 7, 1. ADSGoogle Scholar
  8. Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 2002, Solar Phys. 211, 357. ADSCrossRefGoogle Scholar
  9. Heristchi, D., Mouradian, Z.: 2009, Astron. Astrophys. 497, 835. ADSCrossRefGoogle Scholar
  10. Hoyt, D.V., Schatten, K.H.: 1998, Solar Phys. 179, 189 ADS:1998SoPh..179..189H, doi: 10.1023/A:1005007527816. ADSCrossRefGoogle Scholar
  11. Ikhsanov, R.N., Vitinskii, Yu.I.: 1980, Sov. Phys. Dokl. 25, 9 664. Google Scholar
  12. Li, K.J., Liang, H.F., Feng, W., Zhan, L.S.: 2011, Astrophys. Space Sci. 331, 441. ADSCrossRefGoogle Scholar
  13. Mouradian, Z., Bocchia, R., Botton, C.: 2002, Astron. Astrophys. 394, 1103. ADSCrossRefGoogle Scholar
  14. Mouradian, Z., Heristchi, D.: 2005, Hvar Obs. Bull. 29, 1. ADSGoogle Scholar
  15. Pecker, J.-C.: 1991, In: Cox, A.N., Livingston, W.C., Mathews, M.S. (eds.) Solar Interior and Atmosphere, Univ. Arizona Press, Tucson, 1. Google Scholar
  16. Schove, D.J.: 1983, Sunspot Cycle, Hutchinson Ross, Stroudsburg, 14. Google Scholar
  17. Shapiro, A.I., Schmutz, W., Rozanov, E., Schoell, M., Haberreiter, M., Shapiro, A.V., Nyeki, S.: 2011, Astron. Astrophys. 529, A67. ADSCrossRefGoogle Scholar
  18. Silverman, S.M.: 1992, Rev. Geophys. 30, 4 333. CrossRefGoogle Scholar
  19. Solanki, S.K., Usoskin, I.G., Kromer, B., Schüssler, M., Beer, J.: 2004, Nature 431, 1084. ADSCrossRefGoogle Scholar
  20. Usoskin, I.G.: 2008, Living Rev. Solar Phys. 5, 3. ADSGoogle Scholar
  21. Usoskin, I.G., Solanki, S.K., Kovaltsov, G.A.: 2007, Astron. Astrophys. 471, 301. ADSCrossRefGoogle Scholar
  22. Usoskin, I.G., Mursula, K., Rainer, A., Kovaltsov, G.: 2009, Astrophys. J. 700, L154. ADSCrossRefGoogle Scholar
  23. Yoshimura, H.: 1979, Astrophys. J. 227, 1047. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Observatoire de Paris – MeudonLESIAMeudonFrance

Personalised recommendations